حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد مشتقة المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2.4
أعِد كتابة بالصيغة .
خطوة 2.2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.6
انقُل إلى يسار .
خطوة 2.2.7
اضرب في .
خطوة 2.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.4.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.4.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4.3
أعِد كتابة بالصيغة .
خطوة 2.4.4
اضرب في .
خطوة 2.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
طبّق خاصية التوزيع.
خطوة 2.5.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.1
اضرب في .
خطوة 2.5.2.2
أضف و.
خطوة 2.5.3
أعِد ترتيب الحدود.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
أضف إلى كلا المتعادلين.
خطوة 5.1.2
اطرح من كلا المتعادلين.
خطوة 5.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
أخرِج العامل من .
خطوة 5.2.2
أخرِج العامل من .
خطوة 5.2.3
أخرِج العامل من .
خطوة 5.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
أعِد كتابة العبارة.
خطوة 5.3.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.2.1
ألغِ العامل المشترك.
خطوة 5.3.2.2.2
اقسِم على .
خطوة 5.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.1.1
أخرِج العامل من .
خطوة 5.3.3.1.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.1.2.1
ألغِ العامل المشترك.
خطوة 5.3.3.1.1.2.2
أعِد كتابة العبارة.
خطوة 5.3.3.1.2
انقُل السالب أمام الكسر.
خطوة 5.3.3.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.3.3.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.3.1
اضرب في .
خطوة 5.3.3.3.2
أعِد ترتيب عوامل .
خطوة 5.3.3.4
اجمع البسوط على القاسم المشترك.
خطوة 5.3.3.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.5.1
ارفع إلى القوة .
خطوة 5.3.3.5.2
ارفع إلى القوة .
خطوة 5.3.3.5.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.3.3.5.4
أضف و.
خطوة 5.3.3.5.5
أعِد كتابة بالصيغة .
خطوة 5.3.3.5.6
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 5.3.3.6
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.6.1
أخرِج العامل من .
خطوة 5.3.3.6.2
أخرِج العامل من .
خطوة 5.3.3.6.3
أخرِج العامل من .
خطوة 5.3.3.6.4
أعِد كتابة السوالب.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.6.4.1
أعِد كتابة بالصيغة .
خطوة 5.3.3.6.4.2
انقُل السالب أمام الكسر.
خطوة 6
استبدِل بـ .