حساب التفاضل والتكامل الأمثلة

أوجد قيمة التكامل التكامل من 0 إلى pi/6 لـ sec(2x)tan(2x) بالنسبة إلى x
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1
اضرب في .
خطوة 1.1.3.3.2
انقُل إلى يسار .
خطوة 1.2
عوّض بالنهاية الدنيا عن في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
اضرب في .
خطوة 1.3.2
القيمة الدقيقة لـ هي .
خطوة 1.4
عوّض بالنهاية العليا عن في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1.1
أخرِج العامل من .
خطوة 1.5.1.2
ألغِ العامل المشترك.
خطوة 1.5.1.3
أعِد كتابة العبارة.
خطوة 1.5.2
القيمة الدقيقة لـ هي .
خطوة 1.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 1.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 2
طبّق قاعدة الثابت.
خطوة 3
عوّض وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
احسِب قيمة في وفي .
خطوة 3.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
اجمع و.
خطوة 3.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
ألغِ العامل المشترك.
خطوة 3.2.2.2
أعِد كتابة العبارة.
خطوة 3.2.3
اضرب في .
خطوة 3.2.4
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 3.2.5
اجمع البسوط على القاسم المشترك.
خطوة 3.2.6
اطرح من .
خطوة 4
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: