حساب التفاضل والتكامل الأمثلة

قييم النهاية النهاية عند اقتراب x من 0 لـ (6xe^(-3x+9))/(6x^2+x)
خطوة 1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.2
انقُل النهاية إلى الأُس.
خطوة 2.1.2.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.1.2.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.2.6
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.6.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.6.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.7
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.7.1
اضرب في .
خطوة 2.1.2.7.2
أضف و.
خطوة 2.1.2.7.3
اضرب في .
خطوة 2.1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.1.3.3
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.1.3.4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.5
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.5.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.5.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 2.1.3.5.1.2
اضرب في .
خطوة 2.1.3.5.2
أضف و.
خطوة 2.1.3.5.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.3.6
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.7
اضرب في .
خطوة 2.3.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.9
أضف و.
خطوة 2.3.10
انقُل إلى يسار .
خطوة 2.3.11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.12
اضرب في .
خطوة 2.3.13
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.13.1
أعِد ترتيب الحدود.
خطوة 2.3.13.2
أعِد ترتيب العوامل في .
خطوة 2.3.14
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.15
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.15.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.15.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.15.3
اضرب في .
خطوة 2.3.16
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 3.2
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.4
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 3.5
انقُل النهاية إلى الأُس.
خطوة 3.6
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.7
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.8
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.9
انقُل النهاية إلى الأُس.
خطوة 3.10
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.11
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.12
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.13
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.14
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.15
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.4
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
اضرب في .
خطوة 5.1.2
اضرب في .
خطوة 5.1.3
أضف و.
خطوة 5.1.4
اضرب في .
خطوة 5.1.5
اضرب في .
خطوة 5.1.6
أضف و.
خطوة 5.1.7
أضف و.
خطوة 5.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
اضرب في .
خطوة 5.2.2
أضف و.
خطوة 5.3
اقسِم على .
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: