إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.3
اجمع و.
خطوة 3.4
اجمع البسوط على القاسم المشترك.
خطوة 3.5
بسّط بَسْط الكسر.
خطوة 3.5.1
اضرب في .
خطوة 3.5.2
اطرح من .
خطوة 3.6
اجمع الكسور.
خطوة 3.6.1
انقُل السالب أمام الكسر.
خطوة 3.6.2
اجمع و.
خطوة 3.6.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 3.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.8
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.9
أعِد كتابة بالصيغة .
خطوة 3.10
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.11
اجمع الكسور.
خطوة 3.11.1
أضف و.
خطوة 3.11.2
اجمع و.
خطوة 3.11.3
اجمع و.
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
خطوة 5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.2
اضرب كلا الطرفين في .
خطوة 5.3
بسّط.
خطوة 5.3.1
بسّط الطرف الأيسر.
خطوة 5.3.1.1
بسّط .
خطوة 5.3.1.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 5.3.1.1.2
ألغِ العامل المشترك لـ .
خطوة 5.3.1.1.2.1
ألغِ العامل المشترك.
خطوة 5.3.1.1.2.2
أعِد كتابة العبارة.
خطوة 5.3.1.1.3
ألغِ العامل المشترك لـ .
خطوة 5.3.1.1.3.1
ألغِ العامل المشترك.
خطوة 5.3.1.1.3.2
أعِد كتابة العبارة.
خطوة 5.3.2
بسّط الطرف الأيمن.
خطوة 5.3.2.1
اضرب في .
خطوة 5.4
اقسِم كل حد في على وبسّط.
خطوة 5.4.1
اقسِم كل حد في على .
خطوة 5.4.2
بسّط الطرف الأيسر.
خطوة 5.4.2.1
ألغِ العامل المشترك لـ .
خطوة 5.4.2.1.1
ألغِ العامل المشترك.
خطوة 5.4.2.1.2
اقسِم على .
خطوة 6
استبدِل بـ .