إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.2
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.3
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.1.2.4
انقُل النهاية أسفل علامة الجذر.
خطوة 1.1.2.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.6
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.1.2.6.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.6.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.7
بسّط الإجابة.
خطوة 1.1.2.7.1
بسّط كل حد.
خطوة 1.1.2.7.1.1
ارفع إلى القوة .
خطوة 1.1.2.7.1.2
أعِد كتابة بالصيغة .
خطوة 1.1.2.7.1.3
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 1.1.2.7.1.4
اضرب في .
خطوة 1.1.2.7.1.5
اضرب في .
خطوة 1.1.2.7.2
اطرح من .
خطوة 1.1.3
احسِب قيمة حد القاسم.
خطوة 1.1.3.1
احسِب قيمة النهاية.
خطوة 1.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.1.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3
بسّط الإجابة.
خطوة 1.1.3.3.1
اضرب في .
خطوة 1.1.3.3.2
اطرح من .
خطوة 1.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3
احسِب قيمة .
خطوة 1.3.3.1
استخدِم لكتابة في صورة .
خطوة 1.3.3.2
اضرب في بجمع الأُسس.
خطوة 1.3.3.2.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.3.3.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3.3.2.3
اجمع و.
خطوة 1.3.3.2.4
اجمع البسوط على القاسم المشترك.
خطوة 1.3.3.2.5
بسّط بَسْط الكسر.
خطوة 1.3.3.2.5.1
اضرب في .
خطوة 1.3.3.2.5.2
أضف و.
خطوة 1.3.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3.3.5
اجمع و.
خطوة 1.3.3.6
اجمع البسوط على القاسم المشترك.
خطوة 1.3.3.7
بسّط بَسْط الكسر.
خطوة 1.3.3.7.1
اضرب في .
خطوة 1.3.3.7.2
اطرح من .
خطوة 1.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.5
بسّط.
خطوة 1.3.5.1
أضف و.
خطوة 1.3.5.2
اجمع و.
خطوة 1.3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.9
أضف و.
خطوة 1.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.5
اضرب في .
خطوة 2
خطوة 2.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
خطوة 4.1
أعِد كتابة بالصيغة .
خطوة 4.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3
ألغِ العامل المشترك لـ .
خطوة 4.3.1
ألغِ العامل المشترك.
خطوة 4.3.2
أعِد كتابة العبارة.
خطوة 4.4
ارفع إلى القوة .
خطوة 4.5
ألغِ العامل المشترك لـ .
خطوة 4.5.1
أخرِج العامل من .
خطوة 4.5.2
ألغِ العامل المشترك.
خطوة 4.5.3
أعِد كتابة العبارة.
خطوة 4.6
اضرب في .