إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الثاني.
خطوة 1.1.1
أوجِد المشتق الأول.
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
احسِب قيمة .
خطوة 1.1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.3
اضرب في .
خطوة 1.1.1.2.4
اجمع و.
خطوة 1.1.1.2.5
اجمع و.
خطوة 1.1.1.2.6
احذِف العامل المشترك لـ و.
خطوة 1.1.1.2.6.1
أخرِج العامل من .
خطوة 1.1.1.2.6.2
ألغِ العوامل المشتركة.
خطوة 1.1.1.2.6.2.1
أخرِج العامل من .
خطوة 1.1.1.2.6.2.2
ألغِ العامل المشترك.
خطوة 1.1.1.2.6.2.3
أعِد كتابة العبارة.
خطوة 1.1.1.2.7
انقُل السالب أمام الكسر.
خطوة 1.1.1.3
احسِب قيمة .
خطوة 1.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3.3
اضرب في .
خطوة 1.1.2
أوجِد المشتق الثاني.
خطوة 1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.2
احسِب قيمة .
خطوة 1.1.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.2.3
اضرب في .
خطوة 1.1.2.2.4
اجمع و.
خطوة 1.1.2.2.5
اضرب في .
خطوة 1.1.2.2.6
اجمع و.
خطوة 1.1.2.2.7
احذِف العامل المشترك لـ و.
خطوة 1.1.2.2.7.1
أخرِج العامل من .
خطوة 1.1.2.2.7.2
ألغِ العوامل المشتركة.
خطوة 1.1.2.2.7.2.1
أخرِج العامل من .
خطوة 1.1.2.2.7.2.2
ألغِ العامل المشترك.
خطوة 1.1.2.2.7.2.3
أعِد كتابة العبارة.
خطوة 1.1.2.2.7.2.4
اقسِم على .
خطوة 1.1.2.3
احسِب قيمة .
خطوة 1.1.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3.3
اضرب في .
خطوة 1.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
خطوة 1.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 1.2.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 1.2.2.1
أعِد كتابة بالصيغة .
خطوة 1.2.2.2
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 1.2.2.3
أخرِج العامل من .
خطوة 1.2.2.3.1
أخرِج العامل من .
خطوة 1.2.2.3.2
أخرِج العامل من .
خطوة 1.2.2.3.3
أخرِج العامل من .
خطوة 1.2.2.4
استبدِل كافة حالات حدوث بـ .
خطوة 1.2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 1.2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 1.2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.4.2
أوجِد قيمة في .
خطوة 1.2.4.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 1.2.4.2.2
بسّط .
خطوة 1.2.4.2.2.1
أعِد كتابة بالصيغة .
خطوة 1.2.4.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 1.2.4.2.2.3
زائد أو ناقص يساوي .
خطوة 1.2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 1.2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.5.2
أوجِد قيمة في .
خطوة 1.2.5.2.1
اطرح من كلا المتعادلين.
خطوة 1.2.5.2.2
اقسِم كل حد في على وبسّط.
خطوة 1.2.5.2.2.1
اقسِم كل حد في على .
خطوة 1.2.5.2.2.2
بسّط الطرف الأيسر.
خطوة 1.2.5.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 1.2.5.2.2.2.2
اقسِم على .
خطوة 1.2.5.2.2.3
بسّط الطرف الأيمن.
خطوة 1.2.5.2.2.3.1
اقسِم على .
خطوة 1.2.5.2.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 1.2.5.2.4
بسّط .
خطوة 1.2.5.2.4.1
أعِد كتابة بالصيغة .
خطوة 1.2.5.2.4.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 1.2.5.2.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 1.2.5.2.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 1.2.5.2.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 1.2.5.2.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 1.2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 2
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 3
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 4
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
خطوة 4.2.1
بسّط كل حد.
خطوة 4.2.1.1
ارفع إلى القوة .
خطوة 4.2.1.2
اضرب في .
خطوة 4.2.1.3
ارفع إلى القوة .
خطوة 4.2.1.4
اضرب في .
خطوة 4.2.2
أضف و.
خطوة 4.2.3
الإجابة النهائية هي .
خطوة 4.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
ارفع إلى القوة .
خطوة 5.2.1.4
اضرب في .
خطوة 5.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط كل حد.
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
ارفع إلى القوة .
خطوة 6.2.1.4
اضرب في .
خطوة 6.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
بسّط كل حد.
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
ارفع إلى القوة .
خطوة 7.2.1.4
اضرب في .
خطوة 7.2.2
أضف و.
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 8
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأسفل خلال بما أن سالبة
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
مقعر لأسفل خلال بما أن سالبة
خطوة 9