إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 2
عيّن التكامل لإيجاد الحل.
خطوة 3
حوّل من إلى .
خطوة 4
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6
خطوة 6.1
افترض أن . أوجِد .
خطوة 6.1.1
أوجِد مشتقة .
خطوة 6.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 6.1.3
احسِب قيمة .
خطوة 6.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 6.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.1.3.3
اضرب في .
خطوة 6.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 6.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 6.1.4.2
أضف و.
خطوة 6.2
أعِد كتابة المسألة باستخدام و.
خطوة 7
خطوة 7.1
اضرب في .
خطوة 7.2
انقُل إلى يسار .
خطوة 8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 9
خطوة 9.1
بسّط.
خطوة 9.1.1
اضرب في .
خطوة 9.1.2
اضرب في .
خطوة 9.2
طبّق القواعد الأساسية للأُسس.
خطوة 9.2.1
استخدِم لكتابة في صورة .
خطوة 9.2.2
انقُل خارج القاسم برفعها إلى القوة .
خطوة 9.2.3
اضرب الأُسس في .
خطوة 9.2.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 9.2.3.2
اجمع و.
خطوة 9.2.3.3
انقُل السالب أمام الكسر.
خطوة 10
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 11
خطوة 11.1
افترض أن . أوجِد .
خطوة 11.1.1
أوجِد مشتقة .
خطوة 11.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.1.4
اضرب في .
خطوة 11.2
أعِد كتابة المسألة باستخدام و.
خطوة 12
اجمع و.
خطوة 13
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 14
بما أن مشتق هو ، إذن تكامل هو .
خطوة 15
خطوة 15.1
بسّط.
خطوة 15.2
اجمع و.
خطوة 16
خطوة 16.1
استبدِل كافة حالات حدوث بـ .
خطوة 16.2
استبدِل كافة حالات حدوث بـ .
خطوة 17
أعِد ترتيب الحدود.
خطوة 18
الإجابة هي المشتق العكسي للدالة .