حساب التفاضل والتكامل الأمثلة

Hallar la derivada- d/dx اللوغاريتم الطبيعي لـ x^3 الجذر الخامس لـ x^2+1
خطوة 1
استخدِم لكتابة في صورة .
خطوة 2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3
استبدِل كافة حالات حدوث بـ .
خطوة 5
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6
اجمع و.
خطوة 7
اجمع البسوط على القاسم المشترك.
خطوة 8
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
اضرب في .
خطوة 8.2
اطرح من .
خطوة 9
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
انقُل السالب أمام الكسر.
خطوة 9.2
اجمع و.
خطوة 9.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 9.4
اجمع و.
خطوة 10
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 12
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 13
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
أضف و.
خطوة 13.2
اجمع و.
خطوة 13.3
اجمع و.
خطوة 14
ارفع إلى القوة .
خطوة 15
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 16
أضف و.
خطوة 17
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 18
انقُل إلى يسار .
خطوة 19
جمّع و باستخدام قاسم مشترك.
انقر لعرض المزيد من الخطوات...
خطوة 19.1
انقُل .
خطوة 19.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 19.3
اجمع و.
خطوة 19.4
اجمع البسوط على القاسم المشترك.
خطوة 20
اضرب في .
خطوة 21
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 21.1
انقُل .
خطوة 21.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 21.3
اجمع البسوط على القاسم المشترك.
خطوة 21.4
أضف و.
خطوة 21.5
اقسِم على .
خطوة 22
بسّط .
خطوة 23
اضرب في .
خطوة 24
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 25
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 25.1
اجمع البسوط على القاسم المشترك.
خطوة 25.2
أضف و.
خطوة 26
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 26.1
ألغِ العامل المشترك.
خطوة 26.2
أعِد كتابة العبارة.
خطوة 27
بسّط.
خطوة 28
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 28.1
طبّق خاصية التوزيع.
خطوة 28.2
طبّق خاصية التوزيع.
خطوة 28.3
طبّق خاصية التوزيع.
خطوة 28.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 28.4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 28.4.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 28.4.1.1.1
انقُل .
خطوة 28.4.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 28.4.1.1.3
أضف و.
خطوة 28.4.1.2
اضرب في .
خطوة 28.4.2
أضف و.
خطوة 28.5
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 28.5.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 28.5.1.1
انقُل .
خطوة 28.5.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 28.5.1.3
أضف و.
خطوة 28.5.2
انقُل إلى يسار .
خطوة 28.5.3
اضرب في .
خطوة 28.5.4
انقُل إلى يسار .
خطوة 28.6
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 28.6.1
أخرِج العامل من .
خطوة 28.6.2
أخرِج العامل من .
خطوة 28.6.3
أخرِج العامل من .
خطوة 28.7
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 28.7.1
أخرِج العامل من .
خطوة 28.7.2
أخرِج العامل من .
خطوة 28.7.3
أخرِج العامل من .
خطوة 28.8
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 28.8.1
أخرِج العامل من .
خطوة 28.8.2
ألغِ العامل المشترك.
خطوة 28.8.3
أعِد كتابة العبارة.