حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أخرِج العامل من .
خطوة 4.2
أعِد كتابة في صورة أُس.
خطوة 5
باستخدام متطابقة فيثاغورس، أعِد كتابة بحيث تصبح .
خطوة 6
بسّط.
خطوة 7
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 8
طبّق قاعدة الثابت.
خطوة 9
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 10
بما أن مشتق هو ، إذن تكامل هو .
خطوة 11
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
أعِد كتابة في صورة زائد
خطوة 11.2
أعِد كتابة بالصيغة .
خطوة 12
باستخدام متطابقة فيثاغورس، أعِد كتابة بحيث تصبح .
خطوة 13
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 13.1.1
أوجِد مشتقة .
خطوة 13.1.2
مشتق بالنسبة إلى يساوي .
خطوة 13.2
أعِد كتابة المسألة باستخدام و.
خطوة 14
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 15
طبّق قاعدة الثابت.
خطوة 16
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 17
بسّط.
خطوة 18
استبدِل كافة حالات حدوث بـ .
خطوة 19
أضف و.
خطوة 20
الإجابة هي المشتق العكسي للدالة .