إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
مشتق بالنسبة إلى يساوي .
خطوة 3
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.2
أوجِد المشتقة.
خطوة 3.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.4
اضرب في .
خطوة 3.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.6
بسّط العبارة.
خطوة 3.2.6.1
أضف و.
خطوة 3.2.6.2
انقُل إلى يسار .
خطوة 3.2.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.2.10
بسّط العبارة.
خطوة 3.2.10.1
أضف و.
خطوة 3.2.10.2
انقُل إلى يسار .
خطوة 3.3
بسّط.
خطوة 3.3.1
طبّق خاصية التوزيع.
خطوة 3.3.2
طبّق خاصية التوزيع.
خطوة 3.3.3
طبّق خاصية التوزيع.
خطوة 3.3.4
جمّع الحدود.
خطوة 3.3.4.1
اضرب في .
خطوة 3.3.4.2
اضرب في .
خطوة 3.3.4.3
ارفع إلى القوة .
خطوة 3.3.4.4
ارفع إلى القوة .
خطوة 3.3.4.5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.3.4.6
أضف و.
خطوة 3.3.4.7
اضرب في .
خطوة 3.3.4.8
أضف و.
خطوة 3.3.5
أعِد ترتيب الحدود.
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
استبدِل بـ .