إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 1.4
احسِب قيمة .
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.3
اضرب في .
خطوة 1.5
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 1.5.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.5.2
أضف و.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4.2
أضف و.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
خطوة 4.1
أوجِد المشتق الأول.
خطوة 4.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2
احسِب قيمة .
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اضرب في .
خطوة 4.1.3
احسِب قيمة .
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.3
اضرب في .
خطوة 4.1.4
احسِب قيمة .
خطوة 4.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.4.3
اضرب في .
خطوة 4.1.5
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 4.1.5.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.5.2
أضف و.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 5.2.1
أخرِج العامل من .
خطوة 5.2.1.1
أخرِج العامل من .
خطوة 5.2.1.2
أخرِج العامل من .
خطوة 5.2.1.3
أخرِج العامل من .
خطوة 5.2.1.4
أخرِج العامل من .
خطوة 5.2.1.5
أخرِج العامل من .
خطوة 5.2.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
خطوة 5.2.2.1
أعِد كتابة بالصيغة .
خطوة 5.2.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 5.2.2.3
أعِد كتابة متعدد الحدود.
خطوة 5.2.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 5.3
اقسِم كل حد في على وبسّط.
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
اقسِم على .
خطوة 5.3.3
بسّط الطرف الأيمن.
خطوة 5.3.3.1
اقسِم على .
خطوة 5.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.5
أضف إلى كلا المتعادلين.
خطوة 6
خطوة 6.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
خطوة 9.1
اضرب في .
خطوة 9.2
أضف و.
خطوة 10
خطوة 10.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 10.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 10.2.1
استبدِل المتغير بـ في العبارة.
خطوة 10.2.2
بسّط النتيجة.
خطوة 10.2.2.1
بسّط كل حد.
خطوة 10.2.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 10.2.2.1.2
اضرب في .
خطوة 10.2.2.1.3
اضرب في .
خطوة 10.2.2.2
بسّط عن طريق الجمع والطرح.
خطوة 10.2.2.2.1
أضف و.
خطوة 10.2.2.2.2
اطرح من .
خطوة 10.2.2.3
الإجابة النهائية هي .
خطوة 10.3
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 10.3.1
استبدِل المتغير بـ في العبارة.
خطوة 10.3.2
بسّط النتيجة.
خطوة 10.3.2.1
بسّط كل حد.
خطوة 10.3.2.1.1
ارفع إلى القوة .
خطوة 10.3.2.1.2
اضرب في .
خطوة 10.3.2.1.3
اضرب في .
خطوة 10.3.2.2
بسّط عن طريق الجمع والطرح.
خطوة 10.3.2.2.1
أضف و.
خطوة 10.3.2.2.2
اطرح من .
خطوة 10.3.2.3
الإجابة النهائية هي .
خطوة 10.4
بما أن علامة المشتق الأول لم تتغيّر حول ، إذن هذه النقطة لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا.
لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا
خطوة 10.5
لا توجد نقاط قصوى أو دنيا محلية لـ .
لا توجد نقاط قصوى أو دنيا محلية
لا توجد نقاط قصوى أو دنيا محلية
خطوة 11