حساب التفاضل والتكامل الأمثلة

أوجد قيمة التكامل التكامل من -4 إلى 4 لـ 3 الجذر التربيعي لـ x بالنسبة إلى x
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2
استخدِم لكتابة في صورة .
خطوة 3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 4
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اجمع و.
خطوة 4.2
عوّض وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
احسِب قيمة في وفي .
خطوة 4.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
أعِد كتابة بالصيغة .
خطوة 4.2.2.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.3.1
ألغِ العامل المشترك.
خطوة 4.2.2.3.2
أعِد كتابة العبارة.
خطوة 4.2.2.4
ارفع إلى القوة .
خطوة 4.2.2.5
اضرب في .
خطوة 5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
طبّق خاصية التوزيع.
خطوة 5.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
ألغِ العامل المشترك.
خطوة 5.2.2
أعِد كتابة العبارة.
خطوة 5.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 5.3.2
ألغِ العامل المشترك.
خطوة 5.3.3
أعِد كتابة العبارة.
خطوة 6