إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2
خطوة 2.1
فكّ الكسر واضرب في القاسم المشترك.
خطوة 2.1.1
حلّل الكسر إلى عوامل.
خطوة 2.1.1.1
أخرِج العامل من .
خطوة 2.1.1.1.1
أخرِج العامل من .
خطوة 2.1.1.1.2
أخرِج العامل من .
خطوة 2.1.1.1.3
أخرِج العامل من .
خطوة 2.1.1.2
اختزِل العبارة بحذف العوامل المشتركة.
خطوة 2.1.1.2.1
ألغِ العامل المشترك.
خطوة 2.1.1.2.2
أعِد كتابة العبارة.
خطوة 2.1.2
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 2.1.3
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 2.1.4
ألغِ العامل المشترك لـ .
خطوة 2.1.4.1
ألغِ العامل المشترك.
خطوة 2.1.4.2
أعِد كتابة العبارة.
خطوة 2.1.5
ألغِ العامل المشترك لـ .
خطوة 2.1.5.1
ألغِ العامل المشترك.
خطوة 2.1.5.2
أعِد كتابة العبارة.
خطوة 2.1.6
ألغِ العامل المشترك لـ .
خطوة 2.1.6.1
ألغِ العامل المشترك.
خطوة 2.1.6.2
اقسِم على .
خطوة 2.1.7
انقُل إلى يسار .
خطوة 2.2
أوجِد حل سلسلة المعادلات.
خطوة 2.2.1
أعِد كتابة المعادلة في صورة .
خطوة 2.2.2
اقسِم كل حد في على وبسّط.
خطوة 2.2.2.1
اقسِم كل حد في على .
خطوة 2.2.2.2
بسّط الطرف الأيسر.
خطوة 2.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.2.2.1.2
اقسِم على .
خطوة 2.3
Replace each of the partial fraction coefficients in with the values found for and .
خطوة 2.4
بسّط.
خطوة 2.4.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 2.4.2
اضرب في .
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
اجمع و.
خطوة 5
خطوة 5.1
افترض أن . أوجِد .
خطوة 5.1.1
أوجِد مشتقة .
خطوة 5.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.5
أضف و.
خطوة 5.2
أعِد كتابة المسألة باستخدام و.
خطوة 6
تكامل بالنسبة إلى هو .
خطوة 7
بسّط.
خطوة 8
استبدِل كافة حالات حدوث بـ .