حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (1-x)y'=y^2
خطوة 1
أعِد كتابة المعادلة التفاضلية.
خطوة 2
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
اقسِم كل حد في على .
خطوة 2.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1.1
ألغِ العامل المشترك.
خطوة 2.1.2.1.2
اقسِم على .
خطوة 2.2
اضرب كلا الطرفين في .
خطوة 2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
ألغِ العامل المشترك.
خطوة 2.3.2
أعِد كتابة العبارة.
خطوة 2.4
أعِد كتابة المعادلة.
خطوة 3
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن التكامل في كل طرف.
خطوة 3.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 3.2.1.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.1.2.2
اضرب في .
خطوة 3.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 3.2.3
أعِد كتابة بالصيغة .
خطوة 3.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1.1
أعِد الكتابة.
خطوة 3.3.1.1.2
اقسِم على .
خطوة 3.3.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 3.3.2
قسّم الكسر إلى عدة كسور.
خطوة 3.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 3.3.4
تكامل بالنسبة إلى هو .
خطوة 3.3.5
بسّط.
خطوة 3.3.6
استبدِل كافة حالات حدوث بـ .
خطوة 3.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 4.1.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 4.2
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
اضرب كل حد في في .
خطوة 4.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.2.2.1.2
ألغِ العامل المشترك.
خطوة 4.2.2.1.3
أعِد كتابة العبارة.
خطوة 4.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
أعِد ترتيب العوامل في .
خطوة 4.3
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
أعِد كتابة المعادلة في صورة .
خطوة 4.3.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
أخرِج العامل من .
خطوة 4.3.2.2
أخرِج العامل من .
خطوة 4.3.2.3
أخرِج العامل من .
خطوة 4.3.3
أعِد كتابة بالصيغة .
خطوة 4.3.4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
اقسِم كل حد في على .
خطوة 4.3.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.2.1.1
ألغِ العامل المشترك.
خطوة 4.3.4.2.1.2
اقسِم على .
خطوة 4.3.4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.3.1
انقُل السالب أمام الكسر.
خطوة 4.3.4.3.2
أخرِج العامل من .
خطوة 4.3.4.3.3
أخرِج العامل من .
خطوة 4.3.4.3.4
أخرِج العامل من .
خطوة 4.3.4.3.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.3.5.1
أعِد كتابة بالصيغة .
خطوة 4.3.4.3.5.2
انقُل السالب أمام الكسر.
خطوة 4.3.4.3.5.3
اضرب في .
خطوة 4.3.4.3.5.4
اضرب في .
خطوة 5
بسّط ثابت التكامل.