حساب التفاضل والتكامل الأمثلة

تحقق من حل المعادلة التفاضلية. y'+2y=0 , y=3e^(-2x)
,
خطوة 1
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة المتعادلين.
خطوة 1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.3.2
اضرب في .
خطوة 1.3.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3.4
اضرب في .
خطوة 1.4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 2
عوّض في المعادلة التفاضلية المُعطاة.
خطوة 3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب في .
خطوة 3.2
أضف و.
خطوة 4
الحل المُعطى يستوفي شروط المعادلة التفاضلية المُعطاة.
تمثل حلاً لـ