حساب التفاضل والتكامل الأمثلة

تحقق من حل المعادلة التفاضلية. y'+y''=6e^(2x) , y=e^(2x)
,
خطوة 1
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة المتعادلين.
خطوة 1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.3.1
اضرب في .
خطوة 1.3.2.3.2
انقُل إلى يسار .
خطوة 1.4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 2
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن المشتق.
خطوة 2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
احذِف الأقواس.
خطوة 2.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.6
اضرب في .
خطوة 2.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.8
اضرب في .
خطوة 3
عوّض في المعادلة التفاضلية المُعطاة.
خطوة 4
أضف و.
خطوة 5
الحل المُعطى يستوفي شروط المعادلة التفاضلية المُعطاة.
تمثل حلاً لـ