إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
ألغِ العامل المشترك لـ .
خطوة 1.2.1
أخرِج العامل من .
خطوة 1.2.2
ألغِ العامل المشترك.
خطوة 1.2.3
أعِد كتابة العبارة.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 2.3.2.1
افترض أن . أوجِد .
خطوة 2.3.2.1.1
أوجِد مشتقة .
خطوة 2.3.2.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2.1.4
اضرب في .
خطوة 2.3.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.3
اجمع و.
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.5
بسّط.
خطوة 2.3.5.1
اضرب في .
خطوة 2.3.5.2
انقُل إلى يسار .
خطوة 2.3.6
تكامل بالنسبة إلى هو .
خطوة 2.3.7
بسّط.
خطوة 2.3.7.1
بسّط.
خطوة 2.3.7.2
اجمع و.
خطوة 2.3.8
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.9
أعِد ترتيب الحدود.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
خطوة 3.2.1
بسّط الطرف الأيسر.
خطوة 3.2.1.1
بسّط .
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
بسّط .
خطوة 3.2.2.1.1
بسّط كل حد.
خطوة 3.2.2.1.1.1
اجمع و.
خطوة 3.2.2.1.1.2
انقُل إلى يسار .
خطوة 3.2.2.1.2
بسّط الحدود.
خطوة 3.2.2.1.2.1
طبّق خاصية التوزيع.
خطوة 3.2.2.1.2.2
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.2.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.2.1.2.2.2
أخرِج العامل من .
خطوة 3.2.2.1.2.2.3
ألغِ العامل المشترك.
خطوة 3.2.2.1.2.2.4
أعِد كتابة العبارة.
خطوة 3.2.2.1.2.3
انقُل السالب أمام الكسر.
خطوة 3.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
بسّط ثابت التكامل.