حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية 2(yd)x+e^(-3x)dy=0
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
أخرِج العامل من .
خطوة 3.1.2
ألغِ العامل المشترك.
خطوة 3.1.3
أعِد كتابة العبارة.
خطوة 3.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3
اجمع و.
خطوة 3.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أخرِج العامل من .
خطوة 3.4.2
ألغِ العامل المشترك.
خطوة 3.4.3
أعِد كتابة العبارة.
خطوة 3.5
انقُل السالب أمام الكسر.
خطوة 4
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
تكامل بالنسبة إلى هو .
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
اضرب في .
خطوة 4.3.3.2
اعكِس علامة أُس وأخرِجها من القاسم.
خطوة 4.3.3.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.3.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.3.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.3.3.1.2
اضرب في .
خطوة 4.3.3.3.2
اضرب في .
خطوة 4.3.4
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1.1
أوجِد مشتقة .
خطوة 4.3.4.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.4.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.4.1.4
اضرب في .
خطوة 4.3.4.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.3.5
اجمع و.
خطوة 4.3.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.7.1
اجمع و.
خطوة 4.3.7.2
انقُل السالب أمام الكسر.
خطوة 4.3.8
تكامل بالنسبة إلى هو .
خطوة 4.3.9
بسّط.
خطوة 4.3.10
استبدِل كافة حالات حدوث بـ .
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 5.2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 5.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
أعِد كتابة المعادلة في صورة .
خطوة 5.3.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1
اجمع و.
خطوة 5.3.2.2
انقُل إلى يسار .
خطوة 5.3.3
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 6
جمّع حدود الثابت معًا.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة بالصيغة .
خطوة 6.2
أعِد ترتيب و.
خطوة 6.3
اجمع الثوابت مع الزائد أو الناقص.