إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أعِد الكتابة.
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 2.3.2.1
افترض أن . أوجِد .
خطوة 2.3.2.1.1
أوجِد مشتقة .
خطوة 2.3.2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.3
احسِب قيمة .
خطوة 2.3.2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2.1.3.3
اضرب في .
خطوة 2.3.2.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 2.3.2.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.4.2
أضف و.
خطوة 2.3.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.3
بسّط.
خطوة 2.3.3.1
اضرب في .
خطوة 2.3.3.2
انقُل إلى يسار .
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.5
بسّط العبارة.
خطوة 2.3.5.1
بسّط.
خطوة 2.3.5.1.1
اجمع و.
خطوة 2.3.5.1.2
ألغِ العامل المشترك لـ .
خطوة 2.3.5.1.2.1
ألغِ العامل المشترك.
خطوة 2.3.5.1.2.2
أعِد كتابة العبارة.
خطوة 2.3.5.1.3
اضرب في .
خطوة 2.3.5.2
طبّق القواعد الأساسية للأُسس.
خطوة 2.3.5.2.1
استخدِم لكتابة في صورة .
خطوة 2.3.5.2.2
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.3.5.2.3
اضرب الأُسس في .
خطوة 2.3.5.2.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.5.2.3.2
اجمع و.
خطوة 2.3.5.2.3.3
انقُل السالب أمام الكسر.
خطوة 2.3.6
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.7
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .