إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اقسِم كل حد في على وبسّط.
خطوة 1.1.1
اقسِم كل حد في على .
خطوة 1.1.2
بسّط الطرف الأيسر.
خطوة 1.1.2.1
ألغِ العامل المشترك لـ .
خطوة 1.1.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.1.2
اقسِم على .
خطوة 1.1.3
بسّط الطرف الأيمن.
خطوة 1.1.3.1
بسّط كل حد.
خطوة 1.1.3.1.1
احذِف العامل المشترك لـ و.
خطوة 1.1.3.1.1.1
أخرِج العامل من .
خطوة 1.1.3.1.1.2
ألغِ العوامل المشتركة.
خطوة 1.1.3.1.1.2.1
اضرب في .
خطوة 1.1.3.1.1.2.2
ألغِ العامل المشترك.
خطوة 1.1.3.1.1.2.3
أعِد كتابة العبارة.
خطوة 1.1.3.1.1.2.4
اقسِم على .
خطوة 1.1.3.1.2
احذِف العامل المشترك لـ و.
خطوة 1.1.3.1.2.1
أخرِج العامل من .
خطوة 1.1.3.1.2.2
ألغِ العوامل المشتركة.
خطوة 1.1.3.1.2.2.1
أخرِج العامل من .
خطوة 1.1.3.1.2.2.2
ألغِ العامل المشترك.
خطوة 1.1.3.1.2.2.3
أعِد كتابة العبارة.
خطوة 1.2
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
طبّق قاعدة الثابت.
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.5
تكامل بالنسبة إلى هو .
خطوة 2.3.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.7
بسّط العبارة.
خطوة 2.3.7.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.3.7.2
بسّط.
خطوة 2.3.7.2.1
اجمع و.
خطوة 2.3.7.2.2
اضرب الأُسس في .
خطوة 2.3.7.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.7.2.2.2
اضرب في .
خطوة 2.3.8
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.9
بسّط.
خطوة 2.3.9.1
بسّط.
خطوة 2.3.9.2
اضرب في .
خطوة 2.3.10
أعِد ترتيب الحدود.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .