حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (x^2+3)(dy)/(dx)-x=0
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
طبّق خاصية التوزيع.
خطوة 1.1.2
أضف إلى كلا المتعادلين.
خطوة 1.1.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
أخرِج العامل من .
خطوة 1.1.3.2
أخرِج العامل من .
خطوة 1.1.3.3
أخرِج العامل من .
خطوة 1.1.4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
اقسِم كل حد في على .
خطوة 1.1.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.4.2.1.2
اقسِم على .
خطوة 1.2
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
طبّق قاعدة الثابت.
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.1
أوجِد مشتقة .
خطوة 2.3.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.1.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.1.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.1.1.5
أضف و.
خطوة 2.3.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
اضرب في .
خطوة 2.3.2.2
انقُل إلى يسار .
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.4
تكامل بالنسبة إلى هو .
خطوة 2.3.5
بسّط.
خطوة 2.3.6
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .