حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية xy(dy)/(dx)+3=0 , f(2)=1
,
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
اطرح من كلا المتعادلين.
خطوة 1.1.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
اقسِم كل حد في على .
خطوة 1.1.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.2.1.2
أعِد كتابة العبارة.
خطوة 1.1.2.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.2.1
ألغِ العامل المشترك.
خطوة 1.1.2.2.2.2
اقسِم على .
خطوة 1.1.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1
انقُل السالب أمام الكسر.
خطوة 1.2
أعِد تجميع العوامل.
خطوة 1.3
اضرب كلا الطرفين في .
خطوة 1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.4.2
اضرب في .
خطوة 1.4.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.3.1
أخرِج العامل من .
خطوة 1.4.3.2
أخرِج العامل من .
خطوة 1.4.3.3
ألغِ العامل المشترك.
خطوة 1.4.3.4
أعِد كتابة العبارة.
خطوة 1.5
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.3
اضرب في .
خطوة 2.3.4
تكامل بالنسبة إلى هو .
خطوة 2.3.5
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
طبّق خاصية التوزيع.
خطوة 3.2.2.1.2
اضرب في .
خطوة 3.3
بسّط بنقل داخل اللوغاريتم.
خطوة 3.4
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.5
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 3.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
بسّط ثابت التكامل.
خطوة 5
بما أن يساوي قيمة موجبة في الشرط الابتدائي ، انظر فقط لإيجاد . وعوّض بـ عن وبـ عن .
خطوة 6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة المعادلة في صورة .
خطوة 6.2
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 6.3
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
استخدِم لكتابة في صورة .
خطوة 6.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 6.3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 6.3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 6.3.2.1.2
ارفع إلى القوة .
خطوة 6.3.2.1.3
بسّط.
خطوة 6.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.4
أضف إلى كلا المتعادلين.
خطوة 7
عوّض بـ عن في وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
عوّض بقيمة التي تساوي .