حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=4x(x^2+8)^(-1/3) , y(0)=0
,
خطوة 1
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
طبّق قاعدة الثابت.
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.1
أوجِد مشتقة .
خطوة 2.3.2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2.1.5
أضف و.
خطوة 2.3.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
اجمع و.
خطوة 2.3.3.2
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.5.1
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.5.1.1
اجمع و.
خطوة 2.3.5.1.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.5.1.2.1
أخرِج العامل من .
خطوة 2.3.5.1.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.5.1.2.2.1
أخرِج العامل من .
خطوة 2.3.5.1.2.2.2
ألغِ العامل المشترك.
خطوة 2.3.5.1.2.2.3
أعِد كتابة العبارة.
خطوة 2.3.5.1.2.2.4
اقسِم على .
خطوة 2.3.5.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.5.2.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.3.5.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.5.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.5.2.2.2
اجمع و.
خطوة 2.3.5.2.2.3
انقُل السالب أمام الكسر.
خطوة 2.3.6
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.1
أعِد كتابة بالصيغة .
خطوة 2.3.7.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.2.1
اجمع و.
خطوة 2.3.7.2.2
اضرب في .
خطوة 2.3.7.2.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.2.3.1
أخرِج العامل من .
خطوة 2.3.7.2.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.2.3.2.1
أخرِج العامل من .
خطوة 2.3.7.2.3.2.2
ألغِ العامل المشترك.
خطوة 2.3.7.2.3.2.3
أعِد كتابة العبارة.
خطوة 2.3.7.2.3.2.4
اقسِم على .
خطوة 2.3.8
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
استخدِم الشرط الابتدائي لإيجاد قيمة بالتعويض بـ عن وبـ عن في .
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.2
أضف و.
خطوة 4.2.3
أعِد كتابة بالصيغة .
خطوة 4.2.4
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.5.1
ألغِ العامل المشترك.
خطوة 4.2.5.2
أعِد كتابة العبارة.
خطوة 4.2.6
ارفع إلى القوة .
خطوة 4.2.7
اضرب في .
خطوة 4.3
اطرح من كلا المتعادلين.
خطوة 5
عوّض بـ عن في وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عوّض بقيمة التي تساوي .