إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد قيمة .
خطوة 1.1.1
اطرح من كلا المتعادلين.
خطوة 1.1.2
اقسِم كل حد في على وبسّط.
خطوة 1.1.2.1
اقسِم كل حد في على .
خطوة 1.1.2.2
بسّط الطرف الأيسر.
خطوة 1.1.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.1.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.2.1.2
أعِد كتابة العبارة.
خطوة 1.1.2.2.2
ألغِ العامل المشترك لـ .
خطوة 1.1.2.2.2.1
ألغِ العامل المشترك.
خطوة 1.1.2.2.2.2
اقسِم على .
خطوة 1.1.2.3
بسّط الطرف الأيمن.
خطوة 1.1.2.3.1
انقُل السالب أمام الكسر.
خطوة 1.2
اضرب كلا الطرفين في .
خطوة 1.3
بسّط.
خطوة 1.3.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.3.2
ألغِ العامل المشترك لـ .
خطوة 1.3.2.1
أخرِج العامل من .
خطوة 1.3.2.2
أخرِج العامل من .
خطوة 1.3.2.3
ألغِ العامل المشترك.
خطوة 1.3.2.4
أعِد كتابة العبارة.
خطوة 1.4
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.4
بسّط الإجابة.
خطوة 2.3.4.1
أعِد كتابة بالصيغة .
خطوة 2.3.4.2
بسّط.
خطوة 2.3.4.2.1
اضرب في .
خطوة 2.3.4.2.2
اضرب في .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
خطوة 3.2.1
بسّط الطرف الأيسر.
خطوة 3.2.1.1
بسّط .
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
بسّط .
خطوة 3.2.2.1.1
اجمع و.
خطوة 3.2.2.1.2
طبّق خاصية التوزيع.
خطوة 3.2.2.1.3
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.2.1.3.2
أخرِج العامل من .
خطوة 3.2.2.1.3.3
ألغِ العامل المشترك.
خطوة 3.2.2.1.3.4
أعِد كتابة العبارة.
خطوة 3.2.2.1.4
انقُل السالب أمام الكسر.
خطوة 3.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.4
بسّط .
خطوة 3.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.4.2
اجمع و.
خطوة 3.4.3
اجمع البسوط على القاسم المشترك.
خطوة 3.4.4
اضرب في .
خطوة 3.4.5
أعِد كتابة بالصيغة .
خطوة 3.4.5.1
أخرِج عامل القوة الكاملة من .
خطوة 3.4.5.2
أخرِج عامل القوة الكاملة من .
خطوة 3.4.5.3
أعِد ترتيب الكسر .
خطوة 3.4.6
أخرِج الحدود من تحت الجذر.
خطوة 3.4.7
أعِد كتابة بالصيغة .
خطوة 3.4.8
اجمع.
خطوة 3.4.9
اضرب في .
خطوة 3.4.10
اضرب في .
خطوة 3.4.11
جمّع وبسّط القاسم.
خطوة 3.4.11.1
اضرب في .
خطوة 3.4.11.2
انقُل .
خطوة 3.4.11.3
ارفع إلى القوة .
خطوة 3.4.11.4
ارفع إلى القوة .
خطوة 3.4.11.5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.4.11.6
أضف و.
خطوة 3.4.11.7
أعِد كتابة بالصيغة .
خطوة 3.4.11.7.1
استخدِم لكتابة في صورة .
خطوة 3.4.11.7.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.4.11.7.3
اجمع و.
خطوة 3.4.11.7.4
ألغِ العامل المشترك لـ .
خطوة 3.4.11.7.4.1
ألغِ العامل المشترك.
خطوة 3.4.11.7.4.2
أعِد كتابة العبارة.
خطوة 3.4.11.7.5
احسِب قيمة الأُس.
خطوة 3.4.12
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 3.4.13
بسّط العبارة.
خطوة 3.4.13.1
اضرب في .
خطوة 3.4.13.2
أعِد ترتيب العوامل في .
خطوة 3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
بسّط ثابت التكامل.