حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(x+2)^2e^y , y(1)=0
,
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
أخرِج العامل من .
خطوة 1.2.1.2
ألغِ العامل المشترك.
خطوة 1.2.1.3
أعِد كتابة العبارة.
خطوة 1.2.2
أعِد كتابة بالصيغة .
خطوة 1.2.3
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
طبّق خاصية التوزيع.
خطوة 1.2.3.2
طبّق خاصية التوزيع.
خطوة 1.2.3.3
طبّق خاصية التوزيع.
خطوة 1.2.4
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1.1
اضرب في .
خطوة 1.2.4.1.2
انقُل إلى يسار .
خطوة 1.2.4.1.3
اضرب في .
خطوة 1.2.4.2
أضف و.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
اعكِس علامة أُس وأخرِجها من القاسم.
خطوة 2.2.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.2.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.2.1.2
انقُل إلى يسار .
خطوة 2.2.1.2.1.3
أعِد كتابة بالصيغة .
خطوة 2.2.1.2.2
اضرب في .
خطوة 2.2.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1.1
أوجِد مشتقة .
خطوة 2.2.2.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.2.1.4
اضرب في .
خطوة 2.2.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.4
تكامل بالنسبة إلى هو .
خطوة 2.2.5
بسّط.
خطوة 2.2.6
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.5
طبّق قاعدة الثابت.
خطوة 2.3.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.6.1
اجمع و.
خطوة 2.3.6.2
بسّط.
خطوة 2.3.6.3
أعِد ترتيب الحدود.
خطوة 2.3.7
أعِد ترتيب الحدود.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
اقسِم كل حد في على .
خطوة 3.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.1.2.2
اقسِم على .
خطوة 3.1.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.3.1.1
انقُل العدد سالب واحد من قاسم .
خطوة 3.1.3.1.2
أعِد كتابة بالصيغة .
خطوة 3.1.3.1.3
اضرب في .
خطوة 3.1.3.1.4
انقُل العدد سالب واحد من قاسم .
خطوة 3.1.3.1.5
أعِد كتابة بالصيغة .
خطوة 3.1.3.1.6
اجمع و.
خطوة 3.1.3.1.7
انقُل العدد سالب واحد من قاسم .
خطوة 3.1.3.1.8
أعِد كتابة بالصيغة .
خطوة 3.1.3.1.9
اضرب في .
خطوة 3.1.3.1.10
انقُل العدد سالب واحد من قاسم .
خطوة 3.1.3.1.11
أعِد كتابة بالصيغة .
خطوة 3.2
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 3.3
وسّع الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
وسّع بنقل خارج اللوغاريتم.
خطوة 3.3.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 3.3.3
اضرب في .
خطوة 3.4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
اقسِم كل حد في على .
خطوة 3.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.4.2.2
اقسِم على .
خطوة 3.4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.3.1
انقُل العدد سالب واحد من قاسم .
خطوة 3.4.3.2
أعِد كتابة بالصيغة .
خطوة 4
بسّط ثابت التكامل.
خطوة 5
استخدِم الشرط الابتدائي لإيجاد قيمة بالتعويض بـ عن وبـ عن في .
خطوة 6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة المعادلة في صورة .
خطوة 6.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اقسِم كل حد في على .
خطوة 6.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.2.2.1.2
اقسِم على .
خطوة 6.2.2.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.2.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.2.2.2.2
اضرب في .
خطوة 6.2.2.2.3
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.2.2.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.2.2.4
اجمع و.
خطوة 6.2.2.5
اجمع البسوط على القاسم المشترك.
خطوة 6.2.2.6
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.6.1
اضرب في .
خطوة 6.2.2.6.2
اطرح من .
خطوة 6.2.2.7
انقُل السالب أمام الكسر.
خطوة 6.2.2.8
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.2.2.9
اجمع و.
خطوة 6.2.2.10
اجمع البسوط على القاسم المشترك.
خطوة 6.2.2.11
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.11.1
اضرب في .
خطوة 6.2.2.11.2
اطرح من .
خطوة 6.2.2.12
انقُل السالب أمام الكسر.
خطوة 6.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.1
اقسِم على .
خطوة 6.3
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 6.4
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 6.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1
أعِد كتابة المعادلة في صورة .
خطوة 6.5.2
أي شيء مرفوع إلى هو .
خطوة 6.5.3
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.3.1
أضف إلى كلا المتعادلين.
خطوة 6.5.3.2
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 6.5.3.3
اجمع البسوط على القاسم المشترك.
خطوة 6.5.3.4
أضف و.
خطوة 7
عوّض بـ عن في وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
عوّض بقيمة التي تساوي .