إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
بسّط.
خطوة 1.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.2.2
اجمع و.
خطوة 1.2.3
ألغِ العامل المشترك لـ .
خطوة 1.2.3.1
أخرِج العامل من .
خطوة 1.2.3.2
ألغِ العامل المشترك.
خطوة 1.2.3.3
أعِد كتابة العبارة.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
طبّق القواعد الأساسية للأُسس.
خطوة 2.2.1.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.2.1.2
اضرب الأُسس في .
خطوة 2.2.1.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.2.2
اضرب في .
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.3
بسّط الإجابة.
خطوة 2.2.3.1
أعِد كتابة بالصيغة .
خطوة 2.2.3.2
بسّط.
خطوة 2.2.3.2.1
اضرب في .
خطوة 2.2.3.2.2
انقُل إلى يسار .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
استخدِم قاعدة نصف الزاوية لإعادة كتابة بحيث تصبح .
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.4
بسّط.
خطوة 2.3.4.1
اجمع و.
خطوة 2.3.4.2
احذِف العامل المشترك لـ و.
خطوة 2.3.4.2.1
أخرِج العامل من .
خطوة 2.3.4.2.2
ألغِ العوامل المشتركة.
خطوة 2.3.4.2.2.1
أخرِج العامل من .
خطوة 2.3.4.2.2.2
ألغِ العامل المشترك.
خطوة 2.3.4.2.2.3
أعِد كتابة العبارة.
خطوة 2.3.4.2.2.4
اقسِم على .
خطوة 2.3.5
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.6
طبّق قاعدة الثابت.
خطوة 2.3.7
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 2.3.7.1
افترض أن . أوجِد .
خطوة 2.3.7.1.1
أوجِد مشتقة .
خطوة 2.3.7.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.7.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.7.1.4
اضرب في .
خطوة 2.3.7.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.8
اجمع و.
خطوة 2.3.9
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.10
تكامل بالنسبة إلى هو .
خطوة 2.3.11
بسّط.
خطوة 2.3.12
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.13
بسّط.
خطوة 2.3.13.1
اجمع و.
خطوة 2.3.13.2
طبّق خاصية التوزيع.
خطوة 2.3.13.3
ألغِ العامل المشترك لـ .
خطوة 2.3.13.3.1
ألغِ العامل المشترك.
خطوة 2.3.13.3.2
أعِد كتابة العبارة.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
خطوة 3.1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 3.1.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 3.2
اضرب كل حد في في لحذف الكسور.
خطوة 3.2.1
اضرب كل حد في في .
خطوة 3.2.2
بسّط الطرف الأيسر.
خطوة 3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.2.1.2
ألغِ العامل المشترك.
خطوة 3.2.2.1.3
أعِد كتابة العبارة.
خطوة 3.2.3
بسّط الطرف الأيمن.
خطوة 3.2.3.1
بسّط كل حد.
خطوة 3.2.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.3.1.2
اضرب في .
خطوة 3.2.3.1.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.3.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.3.2
أعِد ترتيب العوامل في .
خطوة 3.3
أوجِد حل المعادلة.
خطوة 3.3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.3.2
أخرِج العامل من .
خطوة 3.3.2.1
أخرِج العامل من .
خطوة 3.3.2.2
أخرِج العامل من .
خطوة 3.3.2.3
أخرِج العامل من .
خطوة 3.3.2.4
أخرِج العامل من .
خطوة 3.3.2.5
أخرِج العامل من .
خطوة 3.3.3
اقسِم كل حد في على وبسّط.
خطوة 3.3.3.1
اقسِم كل حد في على .
خطوة 3.3.3.2
بسّط الطرف الأيسر.
خطوة 3.3.3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.3.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.3.2.1.2
أعِد كتابة العبارة.
خطوة 3.3.3.2.2
ألغِ العامل المشترك لـ .
خطوة 3.3.3.2.2.1
ألغِ العامل المشترك.
خطوة 3.3.3.2.2.2
اقسِم على .
خطوة 3.3.3.3
بسّط الطرف الأيمن.
خطوة 3.3.3.3.1
انقُل السالب أمام الكسر.
خطوة 3.3.4
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.