حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية xy+(dy)/(dx)=100x
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
أخرِج العامل من .
خطوة 1.2.1.2
أخرِج العامل من .
خطوة 1.2.1.3
أخرِج العامل من .
خطوة 1.2.2
أعِد كتابة بالصيغة .
خطوة 1.3
اضرب كلا الطرفين في .
خطوة 1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
أخرِج العامل من .
خطوة 1.4.2
ألغِ العامل المشترك.
خطوة 1.4.3
أعِد كتابة العبارة.
خطوة 1.5
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.1
أعِد الكتابة.
خطوة 2.2.1.1.2
اقسِم على .
خطوة 2.2.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.2
قسّم الكسر إلى عدة كسور.
خطوة 2.2.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.4
تكامل بالنسبة إلى هو .
خطوة 2.2.5
بسّط.
خطوة 2.2.6
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
اقسِم كل حد في على .
خطوة 3.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.1.2.2
اقسِم على .
خطوة 3.1.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.3.1.1
انقُل العدد سالب واحد من قاسم .
خطوة 3.1.3.1.2
أعِد كتابة بالصيغة .
خطوة 3.1.3.1.3
اجمع و.
خطوة 3.1.3.1.4
انقُل العدد سالب واحد من قاسم .
خطوة 3.1.3.1.5
أعِد كتابة بالصيغة .
خطوة 3.2
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.3
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أعِد كتابة المعادلة في صورة .
خطوة 3.4.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 3.4.3
اطرح من كلا المتعادلين.
خطوة 3.4.4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.4.1
اقسِم كل حد في على .
خطوة 3.4.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.4.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.4.4.2.2
اقسِم على .
خطوة 3.4.4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.4.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.4.3.1.1
انقُل العدد سالب واحد من قاسم .
خطوة 3.4.4.3.1.2
أعِد كتابة بالصيغة .
خطوة 3.4.4.3.1.3
اقسِم على .
خطوة 4
جمّع حدود الثابت معًا.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بسّط ثابت التكامل.
خطوة 4.2
أعِد كتابة بالصيغة .
خطوة 4.3
أعِد ترتيب و.
خطوة 4.4
اجمع الثوابت مع الزائد أو الناقص.