حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (y^4+2y)dx+(xy^3+2y^4-4x)dy=0
خطوة 1
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.5.3
اضرب في .
خطوة 2.6
أضف و.
خطوة 3
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
أوجِد عامل التكامل لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
طبّق خاصية التوزيع.
خطوة 4.3.2.2
اضرب في .
خطوة 4.3.2.3
اضرب في .
خطوة 4.3.2.4
اطرح من .
خطوة 4.3.2.5
اطرح من .
خطوة 4.3.2.6
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.6.1
أخرِج العامل من .
خطوة 4.3.2.6.2
أخرِج العامل من .
خطوة 4.3.2.6.3
أخرِج العامل من .
خطوة 4.3.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
أخرِج العامل من .
خطوة 4.3.3.2
أخرِج العامل من .
خطوة 4.3.3.3
أخرِج العامل من .
خطوة 4.3.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
أخرِج العامل من .
خطوة 4.3.4.2
أعِد كتابة بالصيغة .
خطوة 4.3.4.3
أخرِج العامل من .
خطوة 4.3.4.4
أعِد كتابة بالصيغة .
خطوة 4.3.4.5
ألغِ العامل المشترك.
خطوة 4.3.4.6
أعِد كتابة العبارة.
خطوة 4.3.5
اضرب في .
خطوة 4.3.6
عوّض بقيمة التي تساوي .
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
احسِب قيمة تكامل .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.3
اضرب في .
خطوة 5.4
تكامل بالنسبة إلى هو .
خطوة 5.5
بسّط.
خطوة 5.6
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.6.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 5.6.3
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6
اضرب كلا طرفي في عامل التكامل .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اضرب في .
خطوة 6.2
اضرب في .
خطوة 6.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
أخرِج العامل من .
خطوة 6.3.2
أخرِج العامل من .
خطوة 6.3.3
أخرِج العامل من .
خطوة 6.4
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.1
أخرِج العامل من .
خطوة 6.4.2
ألغِ العامل المشترك.
خطوة 6.4.3
أعِد كتابة العبارة.
خطوة 6.5
اضرب في .
خطوة 6.6
اضرب في .
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
طبّق قاعدة الثابت.
خطوة 8.2
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
اجمع و.
خطوة 8.2.2
أعِد كتابة بالصيغة .
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 11.3.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 11.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 11.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.3.7
انقُل إلى يسار .
خطوة 11.3.8
أضف و.
خطوة 11.3.9
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 11.3.9.1
انقُل .
خطوة 11.3.9.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 11.3.9.3
أضف و.
خطوة 11.3.10
انقُل إلى يسار .
خطوة 11.3.11
اضرب في .
خطوة 11.3.12
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 11.3.12.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 11.3.12.2
اضرب في .
خطوة 11.3.13
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 11.3.13.1
أخرِج العامل من .
خطوة 11.3.13.2
أخرِج العامل من .
خطوة 11.3.13.3
أخرِج العامل من .
خطوة 11.3.14
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 11.3.14.1
أخرِج العامل من .
خطوة 11.3.14.2
ألغِ العامل المشترك.
خطوة 11.3.14.3
أعِد كتابة العبارة.
خطوة 11.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.5.1
طبّق خاصية التوزيع.
خطوة 11.5.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 11.5.2.1
اضرب في .
خطوة 11.5.2.2
اطرح من .
خطوة 11.5.2.3
اضرب في .
خطوة 11.5.2.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 11.5.2.5
اجمع البسوط على القاسم المشترك.
خطوة 11.5.3
أعِد ترتيب الحدود.
خطوة 12
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1
بما أن العبارة في كل متعادل لها نفس القاسم، إذن يجب أن يكون البسطان متساويين.
خطوة 12.1.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.2.1
اطرح من كلا المتعادلين.
خطوة 12.1.2.2
أضف إلى كلا المتعادلين.
خطوة 12.1.2.3
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.2.3.1
أعِد ترتيب العوامل في الحدين و.
خطوة 12.1.2.3.2
اطرح من .
خطوة 12.1.2.3.3
أضف و.
خطوة 12.1.2.3.4
أضف و.
خطوة 12.1.2.3.5
أضف و.
خطوة 12.1.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.1
اقسِم كل حد في على .
خطوة 12.1.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.2.1.1
ألغِ العامل المشترك.
خطوة 12.1.3.2.1.2
اقسِم على .
خطوة 12.1.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.3.1.1
أخرِج العامل من .
خطوة 12.1.3.3.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.3.3.1.2.1
اضرب في .
خطوة 12.1.3.3.1.2.2
ألغِ العامل المشترك.
خطوة 12.1.3.3.1.2.3
أعِد كتابة العبارة.
خطوة 12.1.3.3.1.2.4
اقسِم على .
خطوة 13
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 13.1
أوجِد تكامل كلا طرفي .
خطوة 13.2
احسِب قيمة .
خطوة 13.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13.4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 13.5
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 13.5.1
أعِد كتابة بالصيغة .
خطوة 13.5.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 13.5.2.1
اجمع و.
خطوة 13.5.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 13.5.2.2.1
ألغِ العامل المشترك.
خطوة 13.5.2.2.2
أعِد كتابة العبارة.
خطوة 13.5.2.3
اضرب في .
خطوة 14
عوّض عن في .
خطوة 15
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 15.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 15.1.1
أخرِج العامل من .
خطوة 15.1.2
أخرِج العامل من .
خطوة 15.1.3
أخرِج العامل من .
خطوة 15.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 15.3
اجمع البسوط على القاسم المشترك.
خطوة 15.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 15.4.1
طبّق خاصية التوزيع.
خطوة 15.4.2
انقُل إلى يسار .
خطوة 15.4.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 15.4.3.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 15.4.3.2
أضف و.