إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أعِد تجميع العوامل.
خطوة 1.2
اضرب كلا الطرفين في .
خطوة 1.3
بسّط.
خطوة 1.3.1
اجمع.
خطوة 1.3.2
اجمع.
خطوة 1.3.3
ألغِ العامل المشترك لـ .
خطوة 1.3.3.1
ألغِ العامل المشترك.
خطوة 1.3.3.2
أعِد كتابة العبارة.
خطوة 1.3.4
ألغِ العامل المشترك لـ .
خطوة 1.3.4.1
ألغِ العامل المشترك.
خطوة 1.3.4.2
أعِد كتابة العبارة.
خطوة 1.3.5
أعِد كتابة بالصيغة .
خطوة 1.3.6
أعِد كتابة بالصيغة .
خطوة 1.3.7
حوّل من إلى .
خطوة 1.4
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.3
بسّط الإجابة.
خطوة 2.2.3.1
أعِد كتابة بالصيغة .
خطوة 2.2.3.2
بسّط.
خطوة 2.2.3.2.1
اضرب في .
خطوة 2.2.3.2.2
اضرب في .
خطوة 2.3
بما أن مشتق هو ، إذن تكامل هو .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
خطوة 3.2.1
بسّط الطرف الأيسر.
خطوة 3.2.1.1
بسّط .
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
طبّق خاصية التوزيع.
خطوة 3.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.4
أخرِج العامل من .
خطوة 3.4.1
أخرِج العامل من .
خطوة 3.4.2
أخرِج العامل من .
خطوة 3.4.3
أخرِج العامل من .
خطوة 3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.