إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اقسِم كل حد في على وبسّط.
خطوة 1.1.1
اقسِم كل حد في على .
خطوة 1.1.2
بسّط الطرف الأيسر.
خطوة 1.1.2.1
ألغِ العامل المشترك لـ .
خطوة 1.1.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.1.2
اقسِم على .
خطوة 1.1.3
بسّط الطرف الأيمن.
خطوة 1.1.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.1.3.2
اضرب في .
خطوة 1.2
أعِد تجميع العوامل.
خطوة 1.3
اضرب كلا الطرفين في .
خطوة 1.4
بسّط.
خطوة 1.4.1
اضرب في .
خطوة 1.4.2
ألغِ العامل المشترك لـ .
خطوة 1.4.2.1
أخرِج العامل من .
خطوة 1.4.2.2
ألغِ العامل المشترك.
خطوة 1.4.2.3
أعِد كتابة العبارة.
خطوة 1.5
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
أعِد كتابة بالصيغة .
خطوة 2.3.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 2.3.2.1
افترض أن . أوجِد .
خطوة 2.3.2.1.1
أوجِد مشتقة .
خطوة 2.3.2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.3
بسّط.
خطوة 2.3.3.1
بسّط.
خطوة 2.3.3.2
اضرب في .
خطوة 2.3.3.3
انقُل إلى يسار .
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.5
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
خطوة 2.3.5.1
افترض أن . أوجِد .
خطوة 2.3.5.1.1
أوجِد مشتقة .
خطوة 2.3.5.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.5.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.5.1.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.5.1.5
أضف و.
خطوة 2.3.5.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.6
تكامل بالنسبة إلى هو .
خطوة 2.3.7
بسّط.
خطوة 2.3.8
عوّض مجددًا بقيمة كل متغير في التكامل بالتعويض.
خطوة 2.3.8.1
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.8.2
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
خطوة 3.2.1
بسّط الطرف الأيسر.
خطوة 3.2.1.1
بسّط .
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
بسّط .
خطوة 3.2.2.1.1
اجمع و.
خطوة 3.2.2.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.2.2.1.3
بسّط الحدود.
خطوة 3.2.2.1.3.1
اجمع و.
خطوة 3.2.2.1.3.2
اجمع البسوط على القاسم المشترك.
خطوة 3.2.2.1.3.3
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.3.3.1
أخرِج العامل من .
خطوة 3.2.2.1.3.3.2
ألغِ العامل المشترك.
خطوة 3.2.2.1.3.3.3
أعِد كتابة العبارة.
خطوة 3.2.2.1.4
انقُل إلى يسار .
خطوة 3.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.4
بسّط .
خطوة 3.4.1
أعِد كتابة بالصيغة .
خطوة 3.4.2
اضرب في .
خطوة 3.4.3
جمّع وبسّط القاسم.
خطوة 3.4.3.1
اضرب في .
خطوة 3.4.3.2
ارفع إلى القوة .
خطوة 3.4.3.3
ارفع إلى القوة .
خطوة 3.4.3.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.4.3.5
أضف و.
خطوة 3.4.3.6
أعِد كتابة بالصيغة .
خطوة 3.4.3.6.1
استخدِم لكتابة في صورة .
خطوة 3.4.3.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.4.3.6.3
اجمع و.
خطوة 3.4.3.6.4
ألغِ العامل المشترك لـ .
خطوة 3.4.3.6.4.1
ألغِ العامل المشترك.
خطوة 3.4.3.6.4.2
أعِد كتابة العبارة.
خطوة 3.4.3.6.5
احسِب قيمة الأُس.
خطوة 3.4.4
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 3.4.5
أعِد ترتيب العوامل في .
خطوة 3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
بسّط ثابت التكامل.