إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اضرب كلا الطرفين في .
خطوة 2
خطوة 2.1
ألغِ العامل المشترك لـ .
خطوة 2.1.1
أخرِج العامل من .
خطوة 2.1.2
ألغِ العامل المشترك.
خطوة 2.1.3
أعِد كتابة العبارة.
خطوة 2.2
اجمع و.
خطوة 3
خطوة 3.1
عيّن التكامل في كل طرف.
خطوة 3.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 3.3
أوجِد تكامل الطرف الأيمن.
خطوة 3.3.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 3.3.1.1
افترض أن . أوجِد .
خطوة 3.3.1.1.1
أوجِد مشتقة .
خطوة 3.3.1.1.2
أوجِد المشتقة.
خطوة 3.3.1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.1.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.1.1.3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.3.1.1.4
أضف و.
خطوة 3.3.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 3.3.2
تكامل بالنسبة إلى هو .
خطوة 3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 4
خطوة 4.1
اضرب كلا المتعادلين في .
خطوة 4.2
بسّط كلا المتعادلين.
خطوة 4.2.1
بسّط الطرف الأيسر.
خطوة 4.2.1.1
بسّط .
خطوة 4.2.1.1.1
اجمع و.
خطوة 4.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 4.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 4.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 4.2.2
بسّط الطرف الأيمن.
خطوة 4.2.2.1
طبّق خاصية التوزيع.
خطوة 4.3
بسّط بنقل داخل اللوغاريتم.
خطوة 4.4
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4.5
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 4.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
بسّط ثابت التكامل.