حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=x^4-x^3+x-1 , f(0)=-3
,
خطوة 1
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
طبّق قاعدة الثابت.
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.6
اجمع و.
خطوة 2.3.7
طبّق قاعدة الثابت.
خطوة 2.3.8
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
استخدِم الشرط الابتدائي لإيجاد قيمة بالتعويض بـ عن وبـ عن في .
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.1.2
اضرب في .
خطوة 4.2.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.1.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.4.1
اضرب في .
خطوة 4.2.1.4.2
اضرب في .
خطوة 4.2.1.5
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.1.6
اضرب في .
خطوة 4.2.1.7
اضرب في .
خطوة 4.2.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
أضف و.
خطوة 4.2.2.2
أضف و.
خطوة 4.2.2.3
أضف و.
خطوة 4.2.2.4
أضف و.
خطوة 5
عوّض بـ عن في وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عوّض بقيمة التي تساوي .
خطوة 5.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
اجمع و.
خطوة 5.2.2
اجمع و.
خطوة 5.2.3
اجمع و.