حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية 2x(yd)x+(y^2-x^2)dy=0
خطوة 1
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4
اضرب في .
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
اطرح من .
خطوة 3
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرف الأيسر لا يساوي الطرف الأيمن، إذن المعادلة لا تمثل متطابقة.
لا تمثل متطابقة.
لا تمثل متطابقة.
خطوة 4
أوجِد عامل التكامل لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
عوّض بقيمة التي تساوي .
خطوة 4.3
عوّض بقيمة التي تساوي .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.1
أخرِج العامل من .
خطوة 4.3.2.1.2
أخرِج العامل من .
خطوة 4.3.2.1.3
أخرِج العامل من .
خطوة 4.3.2.2
اضرب في .
خطوة 4.3.2.3
اطرح من .
خطوة 4.3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
ألغِ العامل المشترك.
خطوة 4.3.3.2
أعِد كتابة العبارة.
خطوة 4.3.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
أخرِج العامل من .
خطوة 4.3.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.2.1
أخرِج العامل من .
خطوة 4.3.4.2.2
ألغِ العامل المشترك.
خطوة 4.3.4.2.3
أعِد كتابة العبارة.
خطوة 4.3.5
عوّض بقيمة التي تساوي .
خطوة 4.4
أوجِد عامل التكامل لـ .
خطوة 5
احسِب قيمة تكامل .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.3
اضرب في .
خطوة 5.4
تكامل بالنسبة إلى هو .
خطوة 5.5
بسّط.
خطوة 5.6
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.6.2
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 5.6.3
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 5.6.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6
اضرب كلا طرفي في عامل التكامل .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اضرب في .
خطوة 6.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
أخرِج العامل من .
خطوة 6.2.2
أخرِج العامل من .
خطوة 6.2.3
ألغِ العامل المشترك.
خطوة 6.2.4
أعِد كتابة العبارة.
خطوة 6.3
اجمع و.
خطوة 6.4
اجمع و.
خطوة 6.5
انقُل إلى يسار .
خطوة 6.6
اضرب في .
خطوة 6.7
اضرب في .
خطوة 6.8
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 7
عيّن لتساوي تكامل .
خطوة 8
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 8.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
أعِد كتابة بالصيغة .
خطوة 8.3.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.2.1
اضرب في .
خطوة 8.3.2.2
انقُل إلى يسار .
خطوة 8.3.2.3
اضرب في .
خطوة 8.3.2.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 8.3.2.4.1
ألغِ العامل المشترك.
خطوة 8.3.2.4.2
أعِد كتابة العبارة.
خطوة 8.3.2.5
اجمع و.
خطوة 9
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 10
عيّن .
خطوة 11
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
أوجِد مشتقة بالنسبة إلى .
خطوة 11.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 11.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 11.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11.3.2
أعِد كتابة بالصيغة .
خطوة 11.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 11.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 11.5.2
اجمع و.
خطوة 11.5.3
أعِد ترتيب الحدود.
خطوة 12
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1
انقُل كل الحدود التي تحتوي على متغيرات إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.1
اطرح من كلا المتعادلين.
خطوة 12.1.1.2
اجمع البسوط على القاسم المشترك.
خطوة 12.1.1.3
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.3.1
طبّق خاصية التوزيع.
خطوة 12.1.1.3.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.3.2.1
طبّق خاصية التوزيع.
خطوة 12.1.1.3.2.2
طبّق خاصية التوزيع.
خطوة 12.1.1.3.2.3
طبّق خاصية التوزيع.
خطوة 12.1.1.3.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.3.3.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.3.3.1.1.1
انقُل .
خطوة 12.1.1.3.3.1.1.2
اضرب في .
خطوة 12.1.1.3.3.1.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 12.1.1.3.3.1.3
اضرب في .
خطوة 12.1.1.3.3.1.4
اضرب في .
خطوة 12.1.1.3.3.1.5
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 12.1.1.3.3.1.6
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.3.3.1.6.1
انقُل .
خطوة 12.1.1.3.3.1.6.2
اضرب في .
خطوة 12.1.1.3.3.1.7
اضرب في .
خطوة 12.1.1.3.3.1.8
اضرب في .
خطوة 12.1.1.3.3.2
اطرح من .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.3.3.2.1
أعِد ترتيب و.
خطوة 12.1.1.3.3.2.2
اطرح من .
خطوة 12.1.1.3.3.3
أضف و.
خطوة 12.1.1.4
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.4.1
أضف و.
خطوة 12.1.1.4.2
أضف و.
خطوة 12.1.1.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1.5.1
ألغِ العامل المشترك.
خطوة 12.1.1.5.2
اقسِم على .
خطوة 12.1.2
أضف إلى كلا المتعادلين.
خطوة 13
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 13.1
أوجِد تكامل كلا طرفي .
خطوة 13.2
احسِب قيمة .
خطوة 13.3
طبّق قاعدة الثابت.
خطوة 14
عوّض عن في .