حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية 1/(x^2)(1-x^2y)dx+(y-x)dy=0
خطوة 1
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.5
أضف و.
خطوة 1.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.7
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.7.1
اجمع و.
خطوة 1.7.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.7.2.1
ألغِ العامل المشترك.
خطوة 1.7.2.2
أعِد كتابة العبارة.
خطوة 1.7.3
اضرب في .
خطوة 1.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.9
اضرب في .
خطوة 2
أوجِد حيث .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
اطرح من .
خطوة 3
تحقق من أن .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرفين تبين أنهما متكافئان، إذن المعادلة تمثل متطابقة.
تمثل متطابقة.
تمثل متطابقة.
خطوة 4
عيّن لتساوي تكامل .
خطوة 5
أوجِد التكامل لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 5.3
طبّق قاعدة الثابت.
خطوة 5.4
بسّط.
خطوة 6
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 7
عيّن .
خطوة 8
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
أوجِد مشتقة بالنسبة إلى .
خطوة 8.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 8.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 8.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.3.3
اضرب في .
خطوة 8.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 8.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.5.1
اطرح من .
خطوة 8.5.2
أعِد ترتيب الحدود.
خطوة 9
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 9.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1.1
أعِد الكتابة.
خطوة 9.1.1.2
بسّط بجمع الأصفار.
خطوة 9.1.1.3
اضرب في .
خطوة 9.1.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.2.1
أضف إلى كلا المتعادلين.
خطوة 9.1.2.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.2.2.1
قسّم الكسر إلى كسرين.
خطوة 9.1.2.2.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 9.1.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 9.1.2.2.2.1.2
اقسِم على .
خطوة 9.1.2.2.2.2
أعِد كتابة بالصيغة .
خطوة 9.1.2.3
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 9.1.2.3.1
أضف و.
خطوة 9.1.2.3.2
أضف و.
خطوة 10
أوجِد المشتق العكسي لـ لإيجاد .
انقر لعرض المزيد من الخطوات...
خطوة 10.1
أوجِد تكامل كلا طرفي .
خطوة 10.2
احسِب قيمة .
خطوة 10.3
انقُل خارج القاسم برفعها إلى القوة .
خطوة 10.4
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 10.4.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 10.4.2
اضرب في .
خطوة 10.5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 10.6
أعِد كتابة بالصيغة .
خطوة 11
عوّض عن في .
خطوة 12
اجمع و.