حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(x^2-1)/(y^2+1)
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
أعِد كتابة بالصيغة .
خطوة 1.2.1.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
ألغِ العامل المشترك.
خطوة 1.2.2.2
أعِد كتابة العبارة.
خطوة 1.2.3
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
طبّق خاصية التوزيع.
خطوة 1.2.3.2
طبّق خاصية التوزيع.
خطوة 1.2.3.3
طبّق خاصية التوزيع.
خطوة 1.2.4
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1.1
اضرب في .
خطوة 1.2.4.1.2
انقُل إلى يسار .
خطوة 1.2.4.1.3
أعِد كتابة بالصيغة .
خطوة 1.2.4.1.4
اضرب في .
خطوة 1.2.4.1.5
اضرب في .
خطوة 1.2.4.2
أضف و.
خطوة 1.2.4.3
أضف و.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.3
طبّق قاعدة الثابت.
خطوة 2.2.4
بسّط.
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.3
طبّق قاعدة الثابت.
خطوة 2.3.4
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .