إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
خطوة 3.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2
اجمع و.
خطوة 3.3
ألغِ العامل المشترك لـ .
خطوة 3.3.1
ألغِ العامل المشترك.
خطوة 3.3.2
أعِد كتابة العبارة.
خطوة 3.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.5
ألغِ العامل المشترك لـ .
خطوة 3.5.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.5.2
أخرِج العامل من .
خطوة 3.5.3
أخرِج العامل من .
خطوة 3.5.4
ألغِ العامل المشترك.
خطوة 3.5.5
أعِد كتابة العبارة.
خطوة 3.6
اجمع و.
خطوة 3.7
انقُل السالب أمام الكسر.
خطوة 4
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
أوجِد تكامل الطرف الأيسر.
خطوة 4.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.2.2
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
خطوة 4.2.2.1
افترض أن . أوجِد .
خطوة 4.2.2.1.1
أوجِد مشتقة .
خطوة 4.2.2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.2.2.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.2.2.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.2.2.1.5
أضف و.
خطوة 4.2.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.2.3
تكامل بالنسبة إلى هو .
خطوة 4.2.4
بسّط.
خطوة 4.2.5
استبدِل كافة حالات حدوث بـ .
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 4.3.2.1
افترض أن . أوجِد .
خطوة 4.3.2.1.1
أوجِد مشتقة .
خطوة 4.3.2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.2.1.3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 4.3.2.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 4.3.2.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.2.1.4.2
أضف و.
خطوة 4.3.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.3.3
تكامل بالنسبة إلى هو .
خطوة 4.3.4
بسّط.
خطوة 4.3.5
استبدِل كافة حالات حدوث بـ .
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 5
خطوة 5.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 5.2
بسّط الطرف الأيسر.
خطوة 5.2.1
بسّط .
خطوة 5.2.1.1
بسّط كل حد.
خطوة 5.2.1.1.1
بسّط بنقل داخل اللوغاريتم.
خطوة 5.2.1.1.2
احذِف القيمة المطلقة في لأن الأُسس ذات القوى الزوجية دائمًا ما تكون موجبة.
خطوة 5.2.1.2
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 5.2.1.3
أعِد ترتيب العوامل في .
خطوة 5.3
وسّع .
خطوة 5.3.1
أعِد كتابة بالصيغة .
خطوة 5.3.2
وسّع بنقل خارج اللوغاريتم.
خطوة 5.4
المعادلة الموسّعة هي .
خطوة 5.5
اطرح من كلا المتعادلين.
خطوة 5.6
اقسِم كل حد في على وبسّط.
خطوة 5.6.1
اقسِم كل حد في على .
خطوة 5.6.2
بسّط الطرف الأيسر.
خطوة 5.6.2.1
ألغِ العامل المشترك لـ .
خطوة 5.6.2.1.1
ألغِ العامل المشترك.
خطوة 5.6.2.1.2
اقسِم على .
خطوة 5.6.3
بسّط الطرف الأيمن.
خطوة 5.6.3.1
انقُل السالب أمام الكسر.
خطوة 5.7
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 5.8
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 5.9
أوجِد قيمة .
خطوة 5.9.1
أعِد كتابة المعادلة في صورة .
خطوة 5.9.2
بسّط .
خطوة 5.9.2.1
أعِد الكتابة.
خطوة 5.9.2.2
بسّط بجمع الأصفار.
خطوة 5.9.2.3
اجمع البسوط على القاسم المشترك.
خطوة 5.9.3
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 5.9.3.1
أضف إلى كلا المتعادلين.
خطوة 5.9.3.2
بسّط كل حد.
خطوة 5.9.3.2.1
قسّم الكسر إلى كسرين.
خطوة 5.9.3.2.2
انقُل السالب أمام الكسر.
خطوة 6
خطوة 6.1
بسّط ثابت التكامل.
خطوة 6.2
أعِد ترتيب الحدود.
خطوة 6.3
أعِد كتابة بالصيغة .
خطوة 6.4
أعِد ترتيب و.