إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 2
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.4
أعِد كتابة بالصيغة .
خطوة 2.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.7
اضرب في .
خطوة 3
عوّض بقيمة التي تساوي .
خطوة 4
عوّض بالمشتق مجددًا في المعادلة التفاضلية.
خطوة 5
خطوة 5.1
أوجِد قيمة .
خطوة 5.1.1
أضف إلى كلا المتعادلين.
خطوة 5.1.2
اضرب كلا الطرفين في .
خطوة 5.1.3
بسّط.
خطوة 5.1.3.1
بسّط الطرف الأيسر.
خطوة 5.1.3.1.1
بسّط .
خطوة 5.1.3.1.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 5.1.3.1.1.2
ألغِ العامل المشترك لـ .
خطوة 5.1.3.1.1.2.1
أخرِج العامل من .
خطوة 5.1.3.1.1.2.2
ألغِ العامل المشترك.
خطوة 5.1.3.1.1.2.3
أعِد كتابة العبارة.
خطوة 5.1.3.1.1.3
ألغِ العامل المشترك لـ .
خطوة 5.1.3.1.1.3.1
ألغِ العامل المشترك.
خطوة 5.1.3.1.1.3.2
أعِد كتابة العبارة.
خطوة 5.1.3.2
بسّط الطرف الأيمن.
خطوة 5.1.3.2.1
بسّط .
خطوة 5.1.3.2.1.1
طبّق خاصية التوزيع.
خطوة 5.1.3.2.1.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 5.1.3.2.1.3
ألغِ العامل المشترك لـ .
خطوة 5.1.3.2.1.3.1
أخرِج العامل من .
خطوة 5.1.3.2.1.3.2
ألغِ العامل المشترك.
خطوة 5.1.3.2.1.3.3
أعِد كتابة العبارة.
خطوة 5.1.3.2.1.4
اضرب في بجمع الأُسس.
خطوة 5.1.3.2.1.4.1
انقُل .
خطوة 5.1.3.2.1.4.2
اضرب في .
خطوة 5.2
اضرب كلا الطرفين في .
خطوة 5.3
ألغِ العامل المشترك لـ .
خطوة 5.3.1
ألغِ العامل المشترك.
خطوة 5.3.2
أعِد كتابة العبارة.
خطوة 5.4
أعِد كتابة المعادلة.
خطوة 6
خطوة 6.1
عيّن التكامل في كل طرف.
خطوة 6.2
أوجِد تكامل الطرف الأيسر.
خطوة 6.2.1
اكتب الكسر باستخدام التفكيك الكسري الجزئي.
خطوة 6.2.1.1
فكّ الكسر واضرب في القاسم المشترك.
خطوة 6.2.1.1.1
أخرِج العامل من .
خطوة 6.2.1.1.1.1
أخرِج العامل من .
خطوة 6.2.1.1.1.2
أخرِج العامل من .
خطوة 6.2.1.1.1.3
أخرِج العامل من .
خطوة 6.2.1.1.2
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 6.2.1.1.3
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 6.2.1.1.4
ألغِ العامل المشترك لـ .
خطوة 6.2.1.1.4.1
ألغِ العامل المشترك.
خطوة 6.2.1.1.4.2
أعِد كتابة العبارة.
خطوة 6.2.1.1.5
ألغِ العامل المشترك لـ .
خطوة 6.2.1.1.5.1
ألغِ العامل المشترك.
خطوة 6.2.1.1.5.2
أعِد كتابة العبارة.
خطوة 6.2.1.1.6
ألغِ العامل المشترك لـ .
خطوة 6.2.1.1.6.1
ألغِ العامل المشترك.
خطوة 6.2.1.1.6.2
أعِد كتابة العبارة.
خطوة 6.2.1.1.7
بسّط كل حد.
خطوة 6.2.1.1.7.1
ألغِ العامل المشترك لـ .
خطوة 6.2.1.1.7.1.1
ألغِ العامل المشترك.
خطوة 6.2.1.1.7.1.2
اقسِم على .
خطوة 6.2.1.1.7.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 6.2.1.1.7.3
طبّق خاصية التوزيع.
خطوة 6.2.1.1.7.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 6.2.1.1.7.5
اضرب في .
خطوة 6.2.1.1.7.6
اضرب في .
خطوة 6.2.1.1.7.7
ألغِ العامل المشترك لـ .
خطوة 6.2.1.1.7.7.1
ألغِ العامل المشترك.
خطوة 6.2.1.1.7.7.2
اقسِم على .
خطوة 6.2.1.1.7.8
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 6.2.1.1.8
أعِد الترتيب.
خطوة 6.2.1.1.8.1
انقُل .
خطوة 6.2.1.1.8.2
انقُل .
خطوة 6.2.1.1.8.3
انقُل .
خطوة 6.2.1.2
أنشئ معادلات لمتغيرات الكسور الجزئية واستخدمها لتعيين سلسلة معادلات.
خطوة 6.2.1.2.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 6.2.1.2.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 6.2.1.2.3
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 6.2.1.3
أوجِد حل سلسلة المعادلات.
خطوة 6.2.1.3.1
أوجِد قيمة في .
خطوة 6.2.1.3.1.1
أعِد كتابة المعادلة في صورة .
خطوة 6.2.1.3.1.2
اقسِم كل حد في على وبسّط.
خطوة 6.2.1.3.1.2.1
اقسِم كل حد في على .
خطوة 6.2.1.3.1.2.2
بسّط الطرف الأيسر.
خطوة 6.2.1.3.1.2.2.1
ألغِ العامل المشترك لـ .
خطوة 6.2.1.3.1.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.1.3.1.2.2.1.2
اقسِم على .
خطوة 6.2.1.3.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 6.2.1.3.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 6.2.1.3.2.2
بسّط الطرف الأيمن.
خطوة 6.2.1.3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 6.2.1.3.2.2.1.1
أخرِج العامل من .
خطوة 6.2.1.3.2.2.1.2
ألغِ العامل المشترك.
خطوة 6.2.1.3.2.2.1.3
أعِد كتابة العبارة.
خطوة 6.2.1.3.3
أوجِد قيمة في .
خطوة 6.2.1.3.3.1
أعِد كتابة المعادلة في صورة .
خطوة 6.2.1.3.3.2
اطرح من كلا المتعادلين.
خطوة 6.2.1.3.3.3
اقسِم كل حد في على وبسّط.
خطوة 6.2.1.3.3.3.1
اقسِم كل حد في على .
خطوة 6.2.1.3.3.3.2
بسّط الطرف الأيسر.
خطوة 6.2.1.3.3.3.2.1
ألغِ العامل المشترك لـ .
خطوة 6.2.1.3.3.3.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.1.3.3.3.2.1.2
اقسِم على .
خطوة 6.2.1.3.3.3.3
بسّط الطرف الأيمن.
خطوة 6.2.1.3.3.3.3.1
انقُل السالب أمام الكسر.
خطوة 6.2.1.3.4
أوجِد حل سلسلة المعادلات.
خطوة 6.2.1.3.5
اسرِد جميع الحلول.
خطوة 6.2.1.4
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و.
خطوة 6.2.1.5
بسّط.
خطوة 6.2.1.5.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 6.2.1.5.2
اضرب في .
خطوة 6.2.1.5.3
اضرب بسط الكسر في مقلوب القاسم.
خطوة 6.2.1.5.4
اضرب في .
خطوة 6.2.1.5.5
انقُل إلى يسار .
خطوة 6.2.2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 6.2.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6.2.4
تكامل بالنسبة إلى هو .
خطوة 6.2.5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6.2.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6.2.7
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 6.2.7.1
افترض أن . أوجِد .
خطوة 6.2.7.1.1
أوجِد مشتقة .
خطوة 6.2.7.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 6.2.7.1.3
احسِب قيمة .
خطوة 6.2.7.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 6.2.7.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.2.7.1.3.3
اضرب في .
خطوة 6.2.7.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 6.2.7.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 6.2.7.1.4.2
أضف و.
خطوة 6.2.7.2
أعِد كتابة المسألة باستخدام و.
خطوة 6.2.8
بسّط.
خطوة 6.2.8.1
اضرب في .
خطوة 6.2.8.2
انقُل إلى يسار .
خطوة 6.2.9
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6.2.10
بسّط.
خطوة 6.2.10.1
اضرب في .
خطوة 6.2.10.2
اضرب في .
خطوة 6.2.10.3
احذِف العامل المشترك لـ و.
خطوة 6.2.10.3.1
أخرِج العامل من .
خطوة 6.2.10.3.2
ألغِ العوامل المشتركة.
خطوة 6.2.10.3.2.1
أخرِج العامل من .
خطوة 6.2.10.3.2.2
ألغِ العامل المشترك.
خطوة 6.2.10.3.2.3
أعِد كتابة العبارة.
خطوة 6.2.11
تكامل بالنسبة إلى هو .
خطوة 6.2.12
بسّط.
خطوة 6.3
طبّق قاعدة الثابت.
خطوة 6.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 7
خطوة 7.1
بسّط الطرف الأيسر.
خطوة 7.1.1
بسّط كل حد.
خطوة 7.1.1.1
اجمع و.
خطوة 7.1.1.2
اجمع و.
خطوة 7.2
اضرب كل حد في في لحذف الكسور.
خطوة 7.2.1
اضرب كل حد في في .
خطوة 7.2.2
بسّط الطرف الأيسر.
خطوة 7.2.2.1
بسّط كل حد.
خطوة 7.2.2.1.1
ألغِ العامل المشترك لـ .
خطوة 7.2.2.1.1.1
ألغِ العامل المشترك.
خطوة 7.2.2.1.1.2
أعِد كتابة العبارة.
خطوة 7.2.2.1.2
ألغِ العامل المشترك لـ .
خطوة 7.2.2.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 7.2.2.1.2.2
ألغِ العامل المشترك.
خطوة 7.2.2.1.2.3
أعِد كتابة العبارة.
خطوة 7.2.3
بسّط الطرف الأيمن.
خطوة 7.2.3.1
بسّط كل حد.
خطوة 7.2.3.1.1
انقُل إلى يسار .
خطوة 7.2.3.1.2
انقُل إلى يسار .
خطوة 7.3
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 7.4
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 7.5
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 7.6
أوجِد قيمة .
خطوة 7.6.1
أعِد كتابة المعادلة في صورة .
خطوة 7.6.2
اضرب كلا الطرفين في .
خطوة 7.6.3
بسّط الطرف الأيسر.
خطوة 7.6.3.1
ألغِ العامل المشترك لـ .
خطوة 7.6.3.1.1
ألغِ العامل المشترك.
خطوة 7.6.3.1.2
أعِد كتابة العبارة.
خطوة 7.6.4
أوجِد قيمة .
خطوة 7.6.4.1
أعِد ترتيب العوامل في .
خطوة 7.6.4.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 8
خطوة 8.1
بسّط ثابت التكامل.
خطوة 8.2
أعِد كتابة بالصيغة .
خطوة 8.3
أعِد ترتيب و.
خطوة 8.4
اجمع الثوابت مع الزائد أو الناقص.
خطوة 9
استبدِل كافة حالات حدوث بـ .