إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد قيمة .
خطوة 1.1.1
أضف إلى كلا المتعادلين.
خطوة 1.1.2
اقسِم كل حد في على وبسّط.
خطوة 1.1.2.1
اقسِم كل حد في على .
خطوة 1.1.2.2
بسّط الطرف الأيسر.
خطوة 1.1.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.1.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.2.1.2
اقسِم على .
خطوة 1.2
اضرب كلا الطرفين في .
خطوة 1.3
بسّط.
خطوة 1.3.1
اجمع.
خطوة 1.3.2
ألغِ العامل المشترك لـ .
خطوة 1.3.2.1
ألغِ العامل المشترك.
خطوة 1.3.2.2
أعِد كتابة العبارة.
خطوة 1.4
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
طبّق القواعد الأساسية للأُسس.
خطوة 2.2.1.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.2.1.2
اضرب الأُسس في .
خطوة 2.2.1.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.2.2
اضرب في .
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.3
أعِد كتابة بالصيغة .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
طبّق القواعد الأساسية للأُسس.
خطوة 2.3.1.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.3.1.2
اضرب الأُسس في .
خطوة 2.3.1.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.1.2.2
اضرب في .
خطوة 2.3.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.3
أعِد كتابة بالصيغة .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
خطوة 3.1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 3.1.2
بما أن تحتوي على أعداد ومتغيرات على حدٍّ سواء، فهناك خطوتان لإيجاد المضاعف المشترك الأصغر. أوجِد المضاعف المشترك الأصغر للجزء العددي ثم أوجِد المضاعف المشترك الأصغر للجزء المتغير.
خطوة 3.1.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 3.1.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 3.1.5
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 3.1.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 3.1.7
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 3.1.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 3.2
اضرب كل حد في في لحذف الكسور.
خطوة 3.2.1
اضرب كل حد في في .
خطوة 3.2.2
بسّط الطرف الأيسر.
خطوة 3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.2.1.2
أخرِج العامل من .
خطوة 3.2.2.1.3
ألغِ العامل المشترك.
خطوة 3.2.2.1.4
أعِد كتابة العبارة.
خطوة 3.2.3
بسّط الطرف الأيمن.
خطوة 3.2.3.1
ألغِ العامل المشترك لـ .
خطوة 3.2.3.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.3.1.2
أخرِج العامل من .
خطوة 3.2.3.1.3
ألغِ العامل المشترك.
خطوة 3.2.3.1.4
أعِد كتابة العبارة.
خطوة 3.3
أوجِد حل المعادلة.
خطوة 3.3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.3.2
أخرِج العامل من .
خطوة 3.3.2.1
أخرِج العامل من .
خطوة 3.3.2.2
أخرِج العامل من .
خطوة 3.3.2.3
أخرِج العامل من .
خطوة 3.3.3
اقسِم كل حد في على وبسّط.
خطوة 3.3.3.1
اقسِم كل حد في على .
خطوة 3.3.3.2
بسّط الطرف الأيسر.
خطوة 3.3.3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.3.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.3.2.1.2
اقسِم على .
خطوة 3.3.3.3
بسّط الطرف الأيمن.
خطوة 3.3.3.3.1
انقُل السالب أمام الكسر.
خطوة 3.3.3.3.2
أعِد كتابة بالصيغة .
خطوة 3.3.3.3.3
أخرِج العامل من .
خطوة 3.3.3.3.4
أخرِج العامل من .
خطوة 3.3.3.3.5
بسّط العبارة.
خطوة 3.3.3.3.5.1
انقُل السالب أمام الكسر.
خطوة 3.3.3.3.5.2
اضرب في .
خطوة 3.3.3.3.5.3
اضرب في .
خطوة 4
بسّط ثابت التكامل.