حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(x-4)/( الجذر التربيعي لـ x^2-8x+2)
خطوة 1
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
طبّق قاعدة الثابت.
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.1
أوجِد مشتقة .
خطوة 2.3.1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.1.1.3.3
اضرب في .
خطوة 2.3.1.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.1.1.4.2
أضف و.
خطوة 2.3.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
اضرب في .
خطوة 2.3.2.2
انقُل إلى يسار .
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.4
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1
استخدِم لكتابة في صورة .
خطوة 2.3.4.2
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.3.4.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.4.3.2
اجمع و.
خطوة 2.3.4.3.3
انقُل السالب أمام الكسر.
خطوة 2.3.5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.6.1
أعِد كتابة بالصيغة .
خطوة 2.3.6.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.6.2.1
اجمع و.
خطوة 2.3.6.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.6.2.2.1
ألغِ العامل المشترك.
خطوة 2.3.6.2.2.2
أعِد كتابة العبارة.
خطوة 2.3.6.2.3
اضرب في .
خطوة 2.3.7
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .