إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
خطوة 3.1
ألغِ العامل المشترك لـ .
خطوة 3.1.1
ألغِ العامل المشترك.
خطوة 3.1.2
أعِد كتابة العبارة.
خطوة 3.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3
ألغِ العامل المشترك لـ .
خطوة 3.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.3.2
أخرِج العامل من .
خطوة 3.3.3
ألغِ العامل المشترك.
خطوة 3.3.4
أعِد كتابة العبارة.
خطوة 3.4
انقُل السالب أمام الكسر.
خطوة 4
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
أوجِد تكامل الطرف الأيسر.
خطوة 4.2.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 4.2.1.1
افترض أن . أوجِد .
خطوة 4.2.1.1.1
أوجِد مشتقة .
خطوة 4.2.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.2.1.1.3
احسِب قيمة .
خطوة 4.2.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.2.1.1.3.3
اضرب في .
خطوة 4.2.1.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 4.2.1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.2.1.1.4.2
أضف و.
خطوة 4.2.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.2.2
بسّط.
خطوة 4.2.2.1
اضرب في .
خطوة 4.2.2.2
انقُل إلى يسار .
خطوة 4.2.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.2.4
تكامل بالنسبة إلى هو .
خطوة 4.2.5
بسّط.
خطوة 4.2.6
استبدِل كافة حالات حدوث بـ .
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 4.3.2.1
افترض أن . أوجِد .
خطوة 4.3.2.1.1
أوجِد مشتقة .
خطوة 4.3.2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.2.1.3
احسِب قيمة .
خطوة 4.3.2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.2.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.2.1.3.3
اضرب في .
خطوة 4.3.2.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 4.3.2.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.2.1.4.2
أضف و.
خطوة 4.3.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.3.3
بسّط.
خطوة 4.3.3.1
اضرب في .
خطوة 4.3.3.2
انقُل إلى يسار .
خطوة 4.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.5
تكامل بالنسبة إلى هو .
خطوة 4.3.6
بسّط.
خطوة 4.3.7
استبدِل كافة حالات حدوث بـ .
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 5
خطوة 5.1
اضرب كلا المتعادلين في .
خطوة 5.2
بسّط كلا المتعادلين.
خطوة 5.2.1
بسّط الطرف الأيسر.
خطوة 5.2.1.1
بسّط .
خطوة 5.2.1.1.1
اجمع و.
خطوة 5.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 5.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 5.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 5.2.2
بسّط الطرف الأيمن.
خطوة 5.2.2.1
بسّط .
خطوة 5.2.2.1.1
اجمع و.
خطوة 5.2.2.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.2.2.1.3
بسّط الحدود.
خطوة 5.2.2.1.3.1
اجمع و.
خطوة 5.2.2.1.3.2
اجمع البسوط على القاسم المشترك.
خطوة 5.2.2.1.4
انقُل إلى يسار .
خطوة 5.2.2.1.5
بسّط الحدود.
خطوة 5.2.2.1.5.1
اجمع و.
خطوة 5.2.2.1.5.2
أخرِج العامل من .
خطوة 5.2.2.1.5.3
أخرِج العامل من .
خطوة 5.2.2.1.5.4
أخرِج العامل من .
خطوة 5.2.2.1.5.5
بسّط العبارة.
خطوة 5.2.2.1.5.5.1
أعِد كتابة بالصيغة .
خطوة 5.2.2.1.5.5.2
انقُل السالب أمام الكسر.
خطوة 5.3
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 5.4
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 5.5
أوجِد قيمة .
خطوة 5.5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.5.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 5.5.3
أضف إلى كلا المتعادلين.
خطوة 5.5.4
اقسِم كل حد في على وبسّط.
خطوة 5.5.4.1
اقسِم كل حد في على .
خطوة 5.5.4.2
بسّط الطرف الأيسر.
خطوة 5.5.4.2.1
ألغِ العامل المشترك لـ .
خطوة 5.5.4.2.1.1
ألغِ العامل المشترك.
خطوة 5.5.4.2.1.2
اقسِم على .
خطوة 5.5.4.3
بسّط الطرف الأيمن.
خطوة 5.5.4.3.1
اجمع البسوط على القاسم المشترك.
خطوة 6
بسّط ثابت التكامل.