حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية 2xy+8x+(x^2-9)(dy)/(dx)=0
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
طبّق خاصية التوزيع.
خطوة 1.1.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
اطرح من كلا المتعادلين.
خطوة 1.1.2.2
اطرح من كلا المتعادلين.
خطوة 1.1.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
أخرِج العامل من .
خطوة 1.1.3.2
أخرِج العامل من .
خطوة 1.1.3.3
أخرِج العامل من .
خطوة 1.1.4
أعِد كتابة بالصيغة .
خطوة 1.1.5
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.5.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.1.5.2
احذِف الأقواس غير الضرورية.
خطوة 1.1.6
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.1
اقسِم كل حد في على .
خطوة 1.1.6.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.6.2.1.2
أعِد كتابة العبارة.
خطوة 1.1.6.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.2.2.1
ألغِ العامل المشترك.
خطوة 1.1.6.2.2.2
اقسِم على .
خطوة 1.1.6.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.3.1.1
انقُل السالب أمام الكسر.
خطوة 1.1.6.3.1.2
انقُل السالب أمام الكسر.
خطوة 1.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
أخرِج العامل من .
خطوة 1.2.1.2
أخرِج العامل من .
خطوة 1.2.1.3
أخرِج العامل من .
خطوة 1.2.2
اجمع البسوط على القاسم المشترك.
خطوة 1.2.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
أخرِج العامل من .
خطوة 1.2.3.2
أخرِج العامل من .
خطوة 1.2.3.3
أخرِج العامل من .
خطوة 1.3
أعِد تجميع العوامل.
خطوة 1.4
اضرب كلا الطرفين في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.5.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 1.5.2.2
أخرِج العامل من .
خطوة 1.5.2.3
ألغِ العامل المشترك.
خطوة 1.5.2.4
أعِد كتابة العبارة.
خطوة 1.6
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.1
أوجِد مشتقة .
خطوة 2.2.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.1.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.5
أضف و.
خطوة 2.2.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.2
تكامل بالنسبة إلى هو .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.3
اضرب في .
خطوة 2.3.4
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1.1
أوجِد مشتقة .
خطوة 2.3.4.1.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3.4.1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4.1.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4.1.3.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1.3.4.1
أضف و.
خطوة 2.3.4.1.3.4.2
اضرب في .
خطوة 2.3.4.1.3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4.1.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4.1.3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4.1.3.8
بسّط بجمع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1.3.8.1
أضف و.
خطوة 2.3.4.1.3.8.2
اضرب في .
خطوة 2.3.4.1.3.8.3
أضف و.
خطوة 2.3.4.1.3.8.4
بسّط بطرح الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.4.1.3.8.4.1
اطرح من .
خطوة 2.3.4.1.3.8.4.2
أضف و.
خطوة 2.3.4.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.5.1
اضرب في .
خطوة 2.3.5.2
انقُل إلى يسار .
خطوة 2.3.6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.1
اجمع و.
خطوة 2.3.7.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.2.1
أخرِج العامل من .
خطوة 2.3.7.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.7.2.2.1
أخرِج العامل من .
خطوة 2.3.7.2.2.2
ألغِ العامل المشترك.
خطوة 2.3.7.2.2.3
أعِد كتابة العبارة.
خطوة 2.3.7.2.2.4
اقسِم على .
خطوة 2.3.8
تكامل بالنسبة إلى هو .
خطوة 2.3.9
بسّط.
خطوة 2.3.10
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 3.2
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 3.3
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
طبّق خاصية التوزيع.
خطوة 3.3.2
طبّق خاصية التوزيع.
خطوة 3.3.3
طبّق خاصية التوزيع.
خطوة 3.4
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1.1
أعِد ترتيب العوامل في الحدين و.
خطوة 3.4.1.2
أضف و.
خطوة 3.4.1.3
أضف و.
خطوة 3.4.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.1
اضرب في .
خطوة 3.4.2.2
اضرب في .
خطوة 3.5
لضرب القيم المطلقة، اضرب الحدود الموجودة داخل كل قيمة مطلقة.
خطوة 3.6
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
طبّق خاصية التوزيع.
خطوة 3.6.2
طبّق خاصية التوزيع.
خطوة 3.6.3
طبّق خاصية التوزيع.
خطوة 3.7
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
انقُل إلى يسار .
خطوة 3.7.2
اضرب في .
خطوة 3.8
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.9
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.10
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.10.1
أعِد كتابة المعادلة في صورة .
خطوة 3.10.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 3.10.3
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.3.1
اطرح من كلا المتعادلين.
خطوة 3.10.3.2
أضف إلى كلا المتعادلين.
خطوة 3.10.4
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.10.4.1
أخرِج العامل من .
خطوة 3.10.4.2
أخرِج العامل من .
خطوة 3.10.4.3
أخرِج العامل من .
خطوة 3.10.5
أعِد كتابة بالصيغة .
خطوة 3.10.6
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.6.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 3.10.6.2
احذِف الأقواس غير الضرورية.
خطوة 3.10.7
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.7.1
اقسِم كل حد في على .
خطوة 3.10.7.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.7.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.10.7.2.1.1
ألغِ العامل المشترك.
خطوة 3.10.7.2.1.2
أعِد كتابة العبارة.
خطوة 3.10.7.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.10.7.2.2.1
ألغِ العامل المشترك.
خطوة 3.10.7.2.2.2
اقسِم على .
خطوة 3.10.7.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.7.3.1
انقُل السالب أمام الكسر.
خطوة 4
بسّط ثابت التكامل.