حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(1+xe^x)/(y+ye^(y^2))
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
ارفع إلى القوة .
خطوة 1.2.1.2
أخرِج العامل من .
خطوة 1.2.1.3
أخرِج العامل من .
خطوة 1.2.1.4
أخرِج العامل من .
خطوة 1.2.2
اضرب في .
خطوة 1.2.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
ارفع إلى القوة .
خطوة 1.2.3.2
أخرِج العامل من .
خطوة 1.2.3.3
أخرِج العامل من .
خطوة 1.2.3.4
أخرِج العامل من .
خطوة 1.2.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
ألغِ العامل المشترك.
خطوة 1.2.4.2
أعِد كتابة العبارة.
خطوة 1.2.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.5.1
ألغِ العامل المشترك.
خطوة 1.2.5.2
اقسِم على .
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.3
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1.1
أوجِد مشتقة .
خطوة 2.2.3.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.4
اجمع و.
خطوة 2.2.5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.6
تكامل بالنسبة إلى هو .
خطوة 2.2.7
بسّط.
خطوة 2.2.8
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.2
طبّق قاعدة الثابت.
خطوة 2.3.3
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 2.3.4
تكامل بالنسبة إلى هو .
خطوة 2.3.5
بسّط.
خطوة 2.3.6
أعِد ترتيب الحدود.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .