حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dx)/(dt)=(4t^2+3x^2)/(2tx)
خطوة 1
أعِد كتابة المعادلة التفاضلية في صورة الدالة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
قسّم وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
قسّم الكسر إلى كسرين.
خطوة 1.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.1
أخرِج العامل من .
خطوة 1.1.2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.2.1
أخرِج العامل من .
خطوة 1.1.2.1.2.2
ألغِ العامل المشترك.
خطوة 1.1.2.1.2.3
أعِد كتابة العبارة.
خطوة 1.1.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.1
أخرِج العامل من .
خطوة 1.1.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.2.1
أخرِج العامل من .
خطوة 1.1.2.2.2.2
ألغِ العامل المشترك.
خطوة 1.1.2.2.2.3
أعِد كتابة العبارة.
خطوة 1.1.2.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.1
أخرِج العامل من .
خطوة 1.1.2.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.3.2.1
أخرِج العامل من .
خطوة 1.1.2.3.2.2
ألغِ العامل المشترك.
خطوة 1.1.2.3.2.3
أعِد كتابة العبارة.
خطوة 1.2
أعِد كتابة المعادلة التفاضلية في صورة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج عامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
أخرِج العامل من .
خطوة 1.2.1.2
أعِد ترتيب و.
خطوة 1.2.2
أعِد كتابة بالصيغة .
خطوة 1.3
أخرِج عامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أخرِج العامل من .
خطوة 1.3.2
أعِد ترتيب و.
خطوة 2
افترض أن . عوّض بـ عن .
خطوة 3
أوجِد قيمة في .
خطوة 4
استخدِم قاعدة الضرب لإيجاد مشتق بالنسبة إلى .
خطوة 5
عوّض بقيمة التي تساوي .
خطوة 6
أوجِد حل المعادلة التفاضلية المُعوض عنها.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.1.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6.1.1.1.2
اجمع و.
خطوة 6.1.1.1.3
اجمع و.
خطوة 6.1.1.2
اطرح من كلا المتعادلين.
خطوة 6.1.1.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.1
اقسِم كل حد في على .
خطوة 6.1.1.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.2.1.1
ألغِ العامل المشترك.
خطوة 6.1.1.3.2.1.2
اقسِم على .
خطوة 6.1.1.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.3.1
اجمع البسوط على القاسم المشترك.
خطوة 6.1.1.3.3.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.1.1.3.3.3
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.3.3.1
اجمع و.
خطوة 6.1.1.3.3.3.2
اجمع البسوط على القاسم المشترك.
خطوة 6.1.1.3.3.3.3
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.3.3.3.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.3.3.3.1.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.3.3.3.1.1.1
أخرِج العامل من .
خطوة 6.1.1.3.3.3.3.1.1.2
أخرِج العامل من .
خطوة 6.1.1.3.3.3.3.1.1.3
أخرِج العامل من .
خطوة 6.1.1.3.3.3.3.1.2
اضرب في .
خطوة 6.1.1.3.3.3.3.1.3
اطرح من .
خطوة 6.1.1.3.3.3.3.2
اضرب في .
خطوة 6.1.1.3.3.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.3.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.1.1.3.3.4.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.1.1.3.3.4.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.3.4.3.1
اضرب في .
خطوة 6.1.1.3.3.4.3.2
اضرب في .
خطوة 6.1.1.3.3.4.3.3
أعِد ترتيب عوامل .
خطوة 6.1.1.3.3.4.4
اجمع البسوط على القاسم المشترك.
خطوة 6.1.1.3.3.4.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.3.4.5.1
اضرب في .
خطوة 6.1.1.3.3.4.5.2
اضرب في .
خطوة 6.1.1.3.3.5
اضرب بسط الكسر في مقلوب القاسم.
خطوة 6.1.1.3.3.6
اضرب في .
خطوة 6.1.2
أعِد تجميع العوامل.
خطوة 6.1.3
اضرب كلا الطرفين في .
خطوة 6.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.4.1
اضرب في .
خطوة 6.1.4.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.4.2.1
أخرِج العامل من .
خطوة 6.1.4.2.2
ألغِ العامل المشترك.
خطوة 6.1.4.2.3
أعِد كتابة العبارة.
خطوة 6.1.4.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.4.3.1
ألغِ العامل المشترك.
خطوة 6.1.4.3.2
أعِد كتابة العبارة.
خطوة 6.1.5
أعِد كتابة المعادلة.
خطوة 6.2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
عيّن التكامل في كل طرف.
خطوة 6.2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6.2.2.2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.2.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.2.1.1
أوجِد مشتقة .
خطوة 6.2.2.2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 6.2.2.2.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 6.2.2.2.1.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.2.2.2.1.5
أضف و.
خطوة 6.2.2.2.2
أعِد كتابة المسألة باستخدام و.
خطوة 6.2.2.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.3.1
اضرب في .
خطوة 6.2.2.3.2
انقُل إلى يسار .
خطوة 6.2.2.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6.2.2.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.5.1
اجمع و.
خطوة 6.2.2.5.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.5.2.1
ألغِ العامل المشترك.
خطوة 6.2.2.5.2.2
أعِد كتابة العبارة.
خطوة 6.2.2.5.3
اضرب في .
خطوة 6.2.2.6
تكامل بالنسبة إلى هو .
خطوة 6.2.2.7
استبدِل كافة حالات حدوث بـ .
خطوة 6.2.3
تكامل بالنسبة إلى هو .
خطوة 6.2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 6.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 6.3.2
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 6.3.3
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 6.3.4
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 6.3.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.5.1
أعِد كتابة المعادلة في صورة .
خطوة 6.3.5.2
اضرب كلا الطرفين في .
خطوة 6.3.5.3
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.5.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.5.3.1.1
ألغِ العامل المشترك.
خطوة 6.3.5.3.1.2
أعِد كتابة العبارة.
خطوة 6.3.5.4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.5.4.1
أعِد ترتيب العوامل في .
خطوة 6.3.5.4.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 6.3.5.4.3
أعِد ترتيب العوامل في .
خطوة 6.3.5.4.4
اطرح من كلا المتعادلين.
خطوة 6.3.5.4.5
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 6.4
جمّع حدود الثابت معًا.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.1
بسّط ثابت التكامل.
خطوة 6.4.2
اجمع الثوابت مع الزائد أو الناقص.
خطوة 7
عوّض بقيمة التي تساوي .
خطوة 8
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
اضرب كلا الطرفين في .
خطوة 8.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1.1
ألغِ العامل المشترك.
خطوة 8.2.1.2
أعِد كتابة العبارة.