إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
ألغِ العامل المشترك لـ .
خطوة 1.2.1
ألغِ العامل المشترك.
خطوة 1.2.2
أعِد كتابة العبارة.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
بسّط العبارة.
خطوة 2.2.1.1
اعكِس علامة أُس وأخرِجها من القاسم.
خطوة 2.2.1.2
بسّط.
خطوة 2.2.1.2.1
اضرب الأُسس في .
خطوة 2.2.1.2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.2.1.2
اضرب .
خطوة 2.2.1.2.1.2.1
اضرب في .
خطوة 2.2.1.2.1.2.2
اضرب في .
خطوة 2.2.1.2.2
اضرب في .
خطوة 2.2.2
تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.4
طبّق قاعدة الثابت.
خطوة 2.3.5
بسّط.
خطوة 2.3.5.1
اجمع و.
خطوة 2.3.5.2
بسّط.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 3.2
وسّع الطرف الأيسر.
خطوة 3.2.1
وسّع بنقل خارج اللوغاريتم.
خطوة 3.2.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 3.2.3
اضرب في .
خطوة 4
استخدِم الشرط الابتدائي لإيجاد قيمة بالتعويض بـ عن وبـ عن في .
خطوة 5
خطوة 5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.2
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 5.3
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 5.4
أوجِد قيمة .
خطوة 5.4.1
أعِد كتابة المعادلة في صورة .
خطوة 5.4.2
بسّط .
خطوة 5.4.2.1
بسّط كل حد.
خطوة 5.4.2.1.1
ارفع إلى القوة .
خطوة 5.4.2.1.2
اضرب في .
خطوة 5.4.2.2
اطرح من .
خطوة 5.4.3
أي شيء مرفوع إلى هو .
خطوة 5.4.4
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 5.4.4.1
اطرح من كلا المتعادلين.
خطوة 5.4.4.2
اطرح من .
خطوة 6
خطوة 6.1
عوّض بقيمة التي تساوي .