حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=((2+y)^2)/(2x-1)
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
ألغِ العامل المشترك.
خطوة 1.2.2
أعِد كتابة العبارة.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.1
أوجِد مشتقة .
خطوة 2.2.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.1.1.5
أضف و.
خطوة 2.2.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.2.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.2.2.2
اضرب في .
خطوة 2.2.3
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.2.4
أعِد كتابة بالصيغة .
خطوة 2.2.5
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.1
أوجِد مشتقة .
خطوة 2.3.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.1.1.3.3
اضرب في .
خطوة 2.3.1.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.1.1.4.2
أضف و.
خطوة 2.3.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
اضرب في .
خطوة 2.3.2.2
انقُل إلى يسار .
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.4
تكامل بالنسبة إلى هو .
خطوة 2.3.5
بسّط.
خطوة 2.3.6
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
بسّط بنقل داخل اللوغاريتم.
خطوة 3.2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 3.2.2
احذِف الأقواس.
خطوة 3.2.3
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 3.3
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اضرب كل حد في في .
خطوة 3.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.3.2.1.2
ألغِ العامل المشترك.
خطوة 3.3.2.1.3
أعِد كتابة العبارة.
خطوة 3.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1.1
طبّق خاصية التوزيع.
خطوة 3.3.3.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1.2.1
أعِد ترتيب و.
خطوة 3.3.3.1.2.2
بسّط بنقل داخل اللوغاريتم.
خطوة 3.3.3.1.3
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1.3.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1.3.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.3.3.1.3.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1.3.1.2.1
ألغِ العامل المشترك.
خطوة 3.3.3.1.3.1.2.2
أعِد كتابة العبارة.
خطوة 3.3.3.1.3.2
بسّط.
خطوة 3.3.3.1.4
طبّق خاصية التوزيع.
خطوة 3.3.3.1.5
انقُل إلى يسار .
خطوة 3.3.3.2
أعِد ترتيب العوامل في .
خطوة 3.4
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أعِد كتابة المعادلة في صورة .
خطوة 3.4.2
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 3.4.3
أضف إلى كلا المتعادلين.
خطوة 3.4.4
اطرح من كلا المتعادلين.
خطوة 3.4.5
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.5.1
أخرِج العامل من .
خطوة 3.4.5.2
أخرِج العامل من .
خطوة 3.4.6
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.6.1
اقسِم كل حد في على .
خطوة 3.4.6.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.6.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.6.2.1.1
ألغِ العامل المشترك.
خطوة 3.4.6.2.1.2
اقسِم على .
خطوة 3.4.6.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.6.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.6.3.1.1
انقُل السالب أمام الكسر.
خطوة 3.4.6.3.1.2
انقُل السالب أمام الكسر.
خطوة 3.4.6.3.1.3
انقُل السالب أمام الكسر.
خطوة 3.4.6.3.2
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.6.3.2.1
اجمع البسوط على القاسم المشترك.
خطوة 3.4.6.3.2.2
اجمع البسوط على القاسم المشترك.
خطوة 3.4.6.3.2.3
أخرِج العامل من .
خطوة 3.4.6.3.2.4
أعِد كتابة بالصيغة .
خطوة 3.4.6.3.2.5
أخرِج العامل من .
خطوة 3.4.6.3.2.6
أخرِج العامل من .
خطوة 3.4.6.3.2.7
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.6.3.2.7.1
أعِد كتابة بالصيغة .
خطوة 3.4.6.3.2.7.2
انقُل السالب أمام الكسر.
خطوة 4
بسّط ثابت التكامل.