حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية x(yd)x+x^2dy=0
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
أخرِج العامل من .
خطوة 3.1.2
ألغِ العامل المشترك.
خطوة 3.1.3
أعِد كتابة العبارة.
خطوة 3.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.3.2
أخرِج العامل من .
خطوة 3.3.3
ألغِ العامل المشترك.
خطوة 3.3.4
أعِد كتابة العبارة.
خطوة 3.4
انقُل السالب أمام الكسر.
خطوة 4
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
تكامل بالنسبة إلى هو .
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.2
تكامل بالنسبة إلى هو .
خطوة 4.3.3
بسّط.
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 5.2
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 5.3
لضرب القيم المطلقة، اضرب الحدود الموجودة داخل كل قيمة مطلقة.
خطوة 5.4
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 5.5
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 5.6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1
أعِد كتابة المعادلة في صورة .
خطوة 5.6.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 5.6.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.3.1
اقسِم كل حد في على .
خطوة 5.6.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.6.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.6.3.2.1.2
اقسِم على .
خطوة 6
بسّط ثابت التكامل.