إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد قيمة .
خطوة 1.1.1
اطرح من كلا المتعادلين.
خطوة 1.1.2
اقسِم كل حد في على وبسّط.
خطوة 1.1.2.1
اقسِم كل حد في على .
خطوة 1.1.2.2
بسّط الطرف الأيسر.
خطوة 1.1.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.1.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.2.1.2
اقسِم على .
خطوة 1.1.2.3
بسّط الطرف الأيمن.
خطوة 1.1.2.3.1
انقُل السالب أمام الكسر.
خطوة 1.2
اجمع البسوط على القاسم المشترك.
خطوة 1.3
اضرب كلا الطرفين في .
خطوة 1.4
ألغِ العامل المشترك لـ .
خطوة 1.4.1
ألغِ العامل المشترك.
خطوة 1.4.2
أعِد كتابة العبارة.
خطوة 1.5
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 2.3.2
طبّق قاعدة الثابت.
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3.5
بسّط.
خطوة 2.3.6
أعِد ترتيب الحدود.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
خطوة 3.2.1
بسّط الطرف الأيسر.
خطوة 3.2.1.1
بسّط .
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
بسّط .
خطوة 3.2.2.1.1
اجمع و.
خطوة 3.2.2.1.2
طبّق خاصية التوزيع.
خطوة 3.2.2.1.3
بسّط.
خطوة 3.2.2.1.3.1
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.3.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.2.1.3.1.2
ألغِ العامل المشترك.
خطوة 3.2.2.1.3.1.3
أعِد كتابة العبارة.
خطوة 3.2.2.1.3.2
اضرب في .
خطوة 3.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
بسّط ثابت التكامل.