إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أضف إلى كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
خطوة 3.1
ألغِ العامل المشترك لـ .
خطوة 3.1.1
أخرِج العامل من .
خطوة 3.1.2
ألغِ العامل المشترك.
خطوة 3.1.3
أعِد كتابة العبارة.
خطوة 3.2
اضرب في .
خطوة 3.3
ألغِ العامل المشترك لـ .
خطوة 3.3.1
أخرِج العامل من .
خطوة 3.3.2
أخرِج العامل من .
خطوة 3.3.3
ألغِ العامل المشترك.
خطوة 3.3.4
أعِد كتابة العبارة.
خطوة 3.4
اجمع و.
خطوة 4
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
أوجِد تكامل الطرف الأيسر.
خطوة 4.2.1
طبّق القواعد الأساسية للأُسس.
خطوة 4.2.1.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 4.2.1.2
اضرب الأُسس في .
خطوة 4.2.1.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.1.2.2
اضرب في .
خطوة 4.2.2
اضرب .
خطوة 4.2.3
بسّط.
خطوة 4.2.3.1
اضرب في بجمع الأُسس.
خطوة 4.2.3.1.1
اضرب في .
خطوة 4.2.3.1.1.1
ارفع إلى القوة .
خطوة 4.2.3.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.2.3.1.2
اطرح من .
خطوة 4.2.3.2
اضرب في .
خطوة 4.2.4
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 4.2.5
تكامل بالنسبة إلى هو .
خطوة 4.2.6
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 4.2.7
بسّط.
خطوة 4.2.8
أعِد ترتيب الحدود.
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
خطوة 4.3.1
اقسِم على .
خطوة 4.3.1.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
+ | + |
خطوة 4.3.1.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | + |
خطوة 4.3.1.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | + | ||||||
+ | + |
خطوة 4.3.1.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | + | ||||||
- | - |
خطوة 4.3.1.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | + | ||||||
- | - | ||||||
- |
خطوة 4.3.1.6
الإجابة النهائية هي ناتج القسمة زائد الباقي على المقسوم عليه.
خطوة 4.3.2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 4.3.3
طبّق قاعدة الثابت.
خطوة 4.3.4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.5
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
خطوة 4.3.5.1
افترض أن . أوجِد .
خطوة 4.3.5.1.1
أوجِد مشتقة .
خطوة 4.3.5.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.5.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.5.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.5.1.5
أضف و.
خطوة 4.3.5.2
أعِد كتابة المسألة باستخدام و.
خطوة 4.3.6
تكامل بالنسبة إلى هو .
خطوة 4.3.7
بسّط.
خطوة 4.3.8
استبدِل كافة حالات حدوث بـ .
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .