إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
ألغِ العامل المشترك لـ .
خطوة 1.2.1
ألغِ العامل المشترك.
خطوة 1.2.2
أعِد كتابة العبارة.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
طبّق القواعد الأساسية للأُسس.
خطوة 2.2.1.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 2.2.1.2
اضرب الأُسس في .
خطوة 2.2.1.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.2.2
اجمع و.
خطوة 2.2.1.2.3
انقُل السالب أمام الكسر.
خطوة 2.2.2
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 2.3
طبّق قاعدة الثابت.
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
خطوة 3.2.1
بسّط الطرف الأيسر.
خطوة 3.2.1.1
بسّط .
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
اجمع.
خطوة 3.2.1.1.3
ألغِ العامل المشترك.
خطوة 3.2.1.1.4
أعِد كتابة العبارة.
خطوة 3.2.1.1.5
ألغِ العامل المشترك.
خطوة 3.2.1.1.6
اقسِم على .
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
بسّط .
خطوة 3.2.2.1.1
طبّق خاصية التوزيع.
خطوة 3.2.2.1.2
اجمع و.
خطوة 3.2.2.1.3
اجمع و.
خطوة 3.3
ارفع كل متعادل إلى القوة لحذف الأُس الكسري في الطرف الأيسر.
خطوة 3.4
بسّط الطرف الأيسر.
خطوة 3.4.1
بسّط .
خطوة 3.4.1.1
اضرب الأُسس في .
خطوة 3.4.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.4.1.1.2
ألغِ العامل المشترك لـ .
خطوة 3.4.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.4.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.4.1.1.3
ألغِ العامل المشترك لـ .
خطوة 3.4.1.1.3.1
ألغِ العامل المشترك.
خطوة 3.4.1.1.3.2
أعِد كتابة العبارة.
خطوة 3.4.1.2
بسّط.
خطوة 3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
بسّط ثابت التكامل.