إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اضرب كلا الطرفين في .
خطوة 1.2
ألغِ العامل المشترك لـ .
خطوة 1.2.1
ألغِ العامل المشترك.
خطوة 1.2.2
أعِد كتابة العبارة.
خطوة 1.3
أعِد كتابة المعادلة.
خطوة 2
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
أوجِد تكامل الطرف الأيسر.
خطوة 2.2.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 2.2.1.1
افترض أن . أوجِد .
خطوة 2.2.1.1.1
أوجِد مشتقة .
خطوة 2.2.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.3
احسِب قيمة .
خطوة 2.2.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.1.1.3.3
اضرب في .
خطوة 2.2.1.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 2.2.1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.1.1.4.2
أضف و.
خطوة 2.2.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.2.2
بسّط.
خطوة 2.2.2.1
اضرب في .
خطوة 2.2.2.2
انقُل إلى يسار .
خطوة 2.2.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.2.4
تكامل بالنسبة إلى هو .
خطوة 2.2.5
بسّط.
خطوة 2.2.6
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
خطوة 2.3.1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
خطوة 2.3.1.1
افترض أن . أوجِد .
خطوة 2.3.1.1.1
أوجِد مشتقة .
خطوة 2.3.1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.1.1.3
احسِب قيمة .
خطوة 2.3.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.1.1.3.3
اضرب في .
خطوة 2.3.1.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 2.3.1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.1.1.4.2
أضف و.
خطوة 2.3.1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.2
بسّط.
خطوة 2.3.2.1
اضرب في .
خطوة 2.3.2.2
انقُل إلى يسار .
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.4
تكامل بالنسبة إلى هو .
خطوة 2.3.5
بسّط.
خطوة 2.3.6
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
خطوة 3.2.1
بسّط الطرف الأيسر.
خطوة 3.2.1.1
بسّط .
خطوة 3.2.1.1.1
اجمع و.
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
خطوة 3.2.2.1
بسّط .
خطوة 3.2.2.1.1
اجمع و.
خطوة 3.2.2.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.2.2.1.3
بسّط الحدود.
خطوة 3.2.2.1.3.1
اجمع و.
خطوة 3.2.2.1.3.2
اجمع البسوط على القاسم المشترك.
خطوة 3.2.2.1.3.3
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.3.3.1
أخرِج العامل من .
خطوة 3.2.2.1.3.3.2
ألغِ العامل المشترك.
خطوة 3.2.2.1.3.3.3
أعِد كتابة العبارة.
خطوة 3.2.2.1.4
انقُل إلى يسار .
خطوة 3.3
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.4
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.5
أوجِد قيمة .
خطوة 3.5.1
أعِد كتابة المعادلة في صورة .
خطوة 3.5.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 3.5.3
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 3.5.3.1
اطرح من كلا المتعادلين.
خطوة 3.5.3.2
بسّط كل حد.
خطوة 3.5.3.2.1
قسّم الكسر إلى كسرين.
خطوة 3.5.3.2.2
بسّط كل حد.
خطوة 3.5.3.2.2.1
أعِد كتابة بالصيغة .
خطوة 3.5.3.2.2.2
بسّط بنقل داخل اللوغاريتم.
خطوة 3.5.3.2.2.3
احذِف العامل المشترك لـ و.
خطوة 3.5.3.2.2.3.1
أخرِج العامل من .
خطوة 3.5.3.2.2.3.2
ألغِ العوامل المشتركة.
خطوة 3.5.3.2.2.3.2.1
أخرِج العامل من .
خطوة 3.5.3.2.2.3.2.2
ألغِ العامل المشترك.
خطوة 3.5.3.2.2.3.2.3
أعِد كتابة العبارة.
خطوة 3.5.3.2.2.3.2.4
اقسِم على .
خطوة 3.5.4
اقسِم كل حد في على وبسّط.
خطوة 3.5.4.1
اقسِم كل حد في على .
خطوة 3.5.4.2
بسّط الطرف الأيسر.
خطوة 3.5.4.2.1
ألغِ العامل المشترك لـ .
خطوة 3.5.4.2.1.1
ألغِ العامل المشترك.
خطوة 3.5.4.2.1.2
اقسِم على .
خطوة 3.5.4.3
بسّط الطرف الأيمن.
خطوة 3.5.4.3.1
انقُل السالب أمام الكسر.
خطوة 3.5.4.3.2
اجمع البسوط على القاسم المشترك.
خطوة 4
خطوة 4.1
بسّط ثابت التكامل.
خطوة 4.2
أعِد كتابة بالصيغة .
خطوة 4.3
أعِد ترتيب و.
خطوة 4.4
اجمع الثوابت مع الزائد أو الناقص.